Acknowledgement

UBC's Point Grey Campus is located on the traditional, ancestral, and unceded territory of the $x^w m \partial \theta k^w \partial \dot{y} \partial m$ (Musqueam) people.

COURSE INFORMATION

Course Title	Course Code Number	Credit Value
Harmonic Analysis I	MATH 404/541	3

Time and Room: MWF 1pm-2pm. AUDX-Floor 1-Room 157 .

PREREQUISITES AND COREQUISITES

Prerequisites: MATH 300 (complex analysis), 68% or higher in MATH 321 (real variables II) Corequisite: MATH 420 (real analysis I)

CONTACTS

Course Instructor	E-mail	Office Location	Office Hours
Pablo Shmerkin	pshmerkin@math.ubc.ca	MATH 210	By appointment

OTHER INSTRUCTIONAL STAFF

TA (Homework grader): Mukul Rai Choudhuri

SCHEDULE OF TOPICS

The list of topics and corresponding lectures is approximate and may be adjusted as the course progresses. Version of September 26, 2024.

- 1. Hardy-Littlewood maximal function, interpolation, and convolutions (Lectures 1-10).
 - Recap of L^p spaces and the Lebesgue integral.
 - The Hardy-Littlewood maximal function.
 - The Lebesgue differentiation theorem.
 - The Marcinkiewicz Interpolation Theorem.

- The Riesz-Thorin Interpolation Theorem
- Convolutions; Young's inequality.
- Approximations of the identity.
- 2. The Fourier transform and tempered distributions (Lectures 11-19)
 - Fourier transform on L^1 .
 - The Schwartz space.
 - Fourier inversion.
 - Plancherel's Theorem and the Fourier transform on L^2 .
 - Tempered distributions.
 - The uncertainty principle and the locally constant property for balls and ellipsoids.
- 3. Calderón-Zygmund theory (Lectures 20-26)
 - The Hilbert transform.
 - Calderón-Zygmund operators.
 - Calderón-Zygmund decomposition.
 - Weak type (1, 1) estimates..

LEARNING MATERIALS

You are expected to take notes during the lectures. We will not follow any textbook explicitly. There are many excellent books, among which:

- 1. T. Wolff. Lectures in Harmonic Analysis Available (with permission) here . Main source for the second part of the course (Fourier transform and tempered distributions).
- 2. L. Grafakos. Classical Fourier Analysis Available online through UBC library
- 3. Y. Katznelson. An introduction to Harmonic Analysis. 3rd Edition. Available online through UBC library
- 4. J. Duoandikoetxea. Fourier Analysis This book is closest to covering all topics of the course.

Assessments of Learning

There will be:

- 1. Five homework assignments to be handed in. These will be posted on Canvas. Homework solutions must be typeset in LaTex. Tentatively, the due dates are: September 27, October 11, October 25, November 8, November 22.
- 2. An end of term presentation, including a short written report. The presentations will be mostly done in pairs. The presentations will be scheduled during the last 8 lectures of the term. (Updated September 26).

The course grade is computed as: Homework: 60% (each assignment is equally weighted),

Presentations (oral and written components): 40%.

Policy on late or missed assignments. Accommodations for missed or incomplete assignments will be made on a case by case basis. Please contact the instructor as soon as possible if you anticipate missing an assignment. Each student is allowed to submit one homework assignment up to 3 days late without penalty (Added September 26). Outside of rare emergencies, other late assignments will not be accepted without prior arrangement.

Policy on collaboration and use of online tools:

- You are encouraged to discuss the homework problems with your classmates, but you must write up your solutions independently, and acknowledge any collaboration.
- Use of existing internet resources such as Wikipedia, Math Stack Exchange, etc. *is allowed*, but you must acknowledge any sources you use. Posting questions directly related to HW or final presentations on these sites is *not* allowed.
- Use of artificial intelligence tools *is allowed* for both the homework assignments and the final presentation. However, you must explicitly indicate how such tools were used in your submission (e.g. "used chatGPT to fix a latex error"). Be aware that even if a LLM may provide reasonably-looking full answers to HW problems, they are extremely likely to be wrong.

Syllabus Policies

General UBC and Mathematics Department policies can be found here.

Version: September 26, 2024