Math 405/607E 2015: Numerical Solution of Differential Equations Final Exam, December 2015

Family Name:				Given Name:								
Signat	Signature:					Student Number:						
Course	: 405 or 607	E:										
	Question:	1	2	3	4	5	6	7	8	9	Total	
	Points:	15	10	15	5	7	0	8	6	20	86	
	Score.											

Instructions

- You have 150 minutes to write this exam.
- This exam contains 6 pages including this cover page. Ensure you have all the pages.
- Some parts of this exam are multiple choice: for these you do not need to show any calculations unless specifically asked.
- For other problems, please write your answers on an exam booklet.
- For short answer questions, write solutions to the questions in the space provided below each question. If you require more space, label clearly where you have written your solution.
- No aids are allowed. No notes, books, calculators etc.

15 marks

- 1. (a) True False The Trapezoidal rule and Simpson's rule are examples of numerical differentiation methods.
 - (b) Which of the following is often referred to as the "fundamental theorem of finite differences"?
 - A. Stability and consistency imply convergence.
 - B. Stability and convergence imply consistency.
 - C. Consistency and convergence imply stability.
 - (c) $u' = \lambda u$ with u(0) = 1. This is the:
 - A. LeVeque test problem
 - B. Dalquist test problem
 - C. Nyquist test problem
 - D. Macdonald test problem
 - (d) Consider the test problem $u' = \lambda u$ with u(0) = 1 and λ real. Which of the following is true?
 - A. When $\lambda < 0$ any stable numerical time-stepping method will give a solution which decays toward 0, for any choices of time-step k.
 - B. When $\lambda < 0$, a consistent numerical time-stepping method will give a solution which will decay toward zero.
 - C. When $\lambda < 0$, a stable numerical time-stepping method will give a solution which decays toward zero, for any λk contained in the absolute stability region.
 - (e) Consider the ODE IVP u' = f(u) with $u(0) = \eta$. Assuming $v^n \approx u(t_n)$, which of the following is the backward Euler time-stepping method?
 - A. $v^{n+1} = v^n + kf(v^n)$ with $v^0 = \eta$
 - B. $v^n = v^{n+1} + kf(v^{n+1})$ with $v^0 = \eta$
 - C. $v^{n+1} = v^n + k f(v^{n+1})$ with $v^0 = \eta$
 - D. $v^{n+1} = v^n + \frac{k}{2}f(v^n) + \frac{k}{2}f(v^{n+1})$ with $v^0 = \eta$
 - (f) True False An advantage of the backward Euler method is increased stability due to its large absolute stability region. It can usually take larger time-steps k compared to the forward Euler method.
 - (g) True False A disadvantage of the backward Euler method is increased computational cost compared to the forward Euler method. For the same size of time-step k, the backward Euler method will use more computing resources (e.g., CPU time, memory).
 - (h) Which of the following is true?
 - A. Consistent numerical methods guarantee that the numerical solution is close to the exact solution, at least in the limit as $h, k \to 0$. This is because the local truncation error is small.
 - B. Consistent numerical methods approximate the correct equation in the limit as $h, k \to 0$ because the local truncation error limits to 0.
 - C. Consistent numerical methods are always stable so they approximate the exact solution, at least in the limit as $h, k \to 0$.

- (i) Which of the following is true?
 - A. For smooth problems, both forward Euler and backward Euler have global errors of O(k): they are both first order methods.
 - B. Both forward Euler and backward Euler have global errors of O(k) for any ODE problem.
 - C. Because it is more stable, the backward Euler method is a more accurate method than the forward Euler method.
- (j) True False A disadvantage of linear multistep methods is that they require multiple starting values whereas one-step methods require only the initial condition.

(k)	A backward	stable algorithm	gives the/a/ai	n	solution to
	the/a/an $_$		problem.	[Fill in the blanks]	

- (1) What can be said about *stiffness*?
 - A. Boing-boing!
 - B. A stiff problem is one where implicit methods work better (e.g., compute the solution faster).
 - C. A stiff problem tends to involve both fast and slow time-scales.
 - D. One should refer to *stiff problems* (rather than stiff differential equation) because a problem could be stiff only for certain initial conditions or particular domains.
 - E. All of the above are true (especially A.)
- (m) Suppose the condition number of a matrix A is $\kappa(A) = 10^7$. If we solve Ax = b numerical (for some given b) roughly how accurate would you expect the answer to be? (Assume the computation is done on a machine implementing standard IEEE 754 floating point).

A	
Answer:	

- (n) F.T.N.A.?
 - A. For The Next Adventure!
 - B. Fried (and) Tasty (but) Not Animals
 - C. Fundamental Theorem of Numerical Analysis
 - D. All of the above!

Solutions for the following problems should be written in exam booklets.

10 marks

- 2. (a) Derive the real part of the absolute stability region for the Backward Euler method. Sketch the result.
 - (b) Suppose y' = 10y and y(0) = 100. If we select a time-step of k = 1/2, is the backward Euler method (absolutely) stable? Sketch the exact solution and numerical solution (with k = 1/2) on the same axes.
 - (c) Consider the ODE problem $u' = u^2$ with initial condition u(0) = -6. It can be shown (you don't have to) that this has a unique solution for $t > -\frac{1}{6}$.
 - i. Suppose we use stepsize k = 1. Compute one step using the Backward Euler method. What goes wrong?
 - ii. Can you think of how a practical algorithm (for general nonlinear RHS f(u)) might deal with this issue?

15 marks

- 3. (a) Suppose a is a positive real number. Consider the PDE problem $u_t + au_x = 0$ for $x \in [0, 1]$ and t > 0 with initial condition u(0, x) = g(x) and boundary conditions u(t, 0) = 1 and u(t, 1) = 0. Give a first-order discretization of this problem using backward differences in space and Forward Euler in time.
 - (b) Starting with an ansatz of $u = \exp(i\xi jh)$, start a von Neumann stability analysis of the scheme above to find the growth factor $G(\xi)$. You may find it helpful to use the Courant number $\nu = \frac{ka}{h}$ where k is the time-step and h is the spatial step.
 - (c) If a(x) is a specified function with a(x) > 0, modify your discretization (it should still be 1st-order accurate but no justification is required).
 - (d) Now if $-5 \le a(x) \le 5$, use *upwinding* to modify your discretization to construct a stable scheme (again, you do not need to justify this result). What time-step restriction do you expect?

5 marks

4. State the cardinal polynomial of degree n.

Suppose we wish to find a polynomial p_n of degree at most n such that $p_n(x_i) = f_i$ for data f_i at distinct $x_i, i = 0, 1, \ldots, n$. We proved in lectures and on the midterm that a solution exists. Prove that it is unique.

7 marks

- 5. (a) Consider $u_t = u_{xx} + u_{yy} + f(x, y, u)$ on the domain $(x, y) \in [0, 1] \times [0, 2]$ with initial condition u(0, x, y) = g(x, y) and zero Dirichlet boundary conditions. Here f(x, y, u) is a given nonlinear function.
 - For the interior nodes (away from the boundary), give a finite difference discretization of this problem in space (x, y) (a *semidiscretization*, continuous in time, discrete in space, also known as the *method of lines*).
 - (b) For the previous semidiscretization, suggest an appropriate time discretization which avoids the restriction of $k = O(h^2)$ and also avoids using Newton's method (or other iterative solvers.)

4 (bonus)

6. The Chebfun software project attempts to represent functions to machine precision accuracy (that is, with error approximately 2.2×10^{-16}) using a truncated expansion in Chebyshev polynomials: $u(x) \approx \sum_{n=0}^{M} w_n T_n(x)$ where w_n are the coefficients of the expansion. On the domain of interest, the Chebyshev polynomials have maximum value $|T_n(x)|_{\infty} = 1$.

Consider a function with expansion coefficients w_n as shown:

- (a) How many terms M should Chebfun keep in its expansion?
- (b) Do you think it is possible to design an algorithm to determine M? If so, describe briefly (one sentence). If not, describe how one might trick Chebfun (suggestion: draw a carefully labelled diagram).

8 marks

- 7. (a) What sort of matrix problem is solved by the *QR algorithm*? What is the output of the algorithm? State the most basic version of the algorithm (e.g., without shifts or preprocessing of the matrix).
 - (b) Suppose we have the SVD of a nonsingular square $n \times n$ matrix A. Describe the steps needed to efficiently solve Ax = b using that result. What is operation count (in big Oh notation) for each step?

6 marks

8. (a) What is computed by the following pseudocode? (i.e., what is the meaning of "v"?)

i = sqrt(-1)

u = <vector of length n, consisting of samples of a function>

k = <vector of wave numbers>

uhat = fft(u)

 $vhat = -i * k.^3 * uhat$

v = ifft(vhat)

- (b) For each of the last three lines, what is the cost (in Big Oh notation or otherwise)? If helpful, you may assume n is a highly composite number (for example, that it factors into powers of 2 and 3).
- (c) Suppose the "u" consists of n equispaced samples of a smooth periodic function. How might you expect the accuracy of "v" to scale with n?

20 marks

- 9. (a) What is an orthogonal matrix, Q? If the Euclidean length of a column vector $x \in \mathbb{R}^n$ is $||x|| = \sqrt{x^T x}$, show that ||Qx|| = ||x||.
 - (b) Suppose A is an invertible $n \times n$ matrix and $b \in \mathbb{R}^n$ is a vector. Given a factorization A = QR where Q is orthogonal and R is upper triangular, explain how to solve Ax = b for $x \in \mathbb{R}^n$ using $O(n^2)$ floating point operations.
 - (c) i. Define a Givens rotation matrix $J(i, j, \theta)$. Show explicitly that any such matrix is orthogonal.
 - ii. Given any vector $x \in \mathbb{R}^n$ with $n \geq 2$ and distinct integers i, j, with $1 \leq i, j \leq n$, show that θ can be so chosen that $y = J(i, j, \theta)x$ has $y_j = 0$ and $y_k = x_k$ for $k \neq i, j$. What is y_i , explicitly in terms of the entries of x?
 - (d) We adopt the common convention that, for an $n \times n$ matrix B, J(i,j)B should be interpreted as $J(i,j,\theta)B$ where θ is obtained by applying the procedure described above with x equal to the i^{th} column of B.
 - i. Consider a matrix Q_1 defined by a product of Givens rotation matrices:

$$\underbrace{J(1,n)J(1,n-1)\dots J(1,3)J(1,2)}_{Q_1}A,$$

where $A = [a \mid b]$ is an $n \times 2$ matrix with columns $a \in \mathbb{R}^n$ and $b \in \mathbb{R}^n$. What is $Q_1 a$? (this notation means matrix Q_1 times vector a)

- ii. Define a matrix Q_2 , in terms of one or more Givens rotation matrices, such that $B = Q_2 Q_1 A$ has the following properties:
 - B(:,1), the first column of B is unchanged from that of Q_1A and;
 - B(:,2), the second column of B has B(i,2) = 0 for $i \ge 3$.
- iii. Now suppose that A is a $n \times 2$ matrix with orthonormal columns. What can you say about the first row of Q_1A ? Prove it.