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Marks

[9] 1. Define

(a)
∫ b

a
f(x) dα(x)

(b) a self–adjoint algebra of functions

(c) the Fourier series of a function

Continued on page 3
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[16] 2. Give an example of each of the following, together with a brief explanation of your example.
If an example does not exist, explain why not.

(a) A differentiable function which is not monotonic but whose derivative obeys |f ′(x)| ≥ 1.

(b) Two functions f, α : [0, 1] → IR with f continuous, but f /∈ R(α) on [0, 1].

(c) A continuous function f : (−1, 1) → IR that cannot be uniformly approximated by a
polynomial.

(d) A monotonically decreasing sequence of functions fn : [0, 1] → IR which converges point-
wise, but not uniformly to zero.

Continued on page 4
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[15] 3. Let f be a continuous function on IR. Suppose that f ′(x) exists for all x 6= 0 and that
f ′(x) → 3 as x → 0. Does it follow that f ′(0) exists? You must justify your conclusion.

Continued on page 6
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[15] 4. Suppose that the function f : [a, b] → IR is differentiable and that there is a number D such
that

|f ′(x)| ≤ D

for all x ∈ [a, b] . Let P = {x0, x1, · · · , xn} be a partition of [a, b], T = {t1, · · · , tn} be a choice
for P and S(P, T, f) =

∑n

i=1 f(ti)[xi − x−1] be the corresponding Riemann sum. Prove that

∣

∣

∣

∣

S(P, T, f) −

∫ b

a

f(x) dx

∣

∣

∣

∣

≤ D‖P‖(b − a) where ‖P‖ = max
1≤i≤n

[xi − xi−1]

Continued on page 7



April 2006 MATH 321 Name Page 7 of 12 pages

Continued on page 8



April 2006 MATH 321 Name Page 8 of 12 pages

[15] 5. Let {fn : [0, 1] → IR}n∈IN be a sequence of continuous functions that obey |fn(y)| ≤ 1 for all
n ∈ IN and all y ∈ [0, 1]. Let T : [0, 1] × [0, 1] → IR be continuous and define, for each n ∈ IN,

gn(x) =

∫ 1

0

T (x, y) fn(y) dy

Prove that the sequence {gn}n∈IN has a uniformly convergent subsequence.

Continued on page 9
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[15] 6. (a) Let H =
{

(x, y) ∈ IR2
∣

∣ x ≥ 0, y ≥ 0, x2 + y2 ≤ 1
}

. Prove that for any ε > 0 and any
continuous function f : H → IR there exists a function g(x, y) of the form

g(x, y) =
N

∑

m=0

N
∑

n=0

am,nx2my2n N ∈ ZZ, N ≥ 0, am,n ∈ IR

such that
sup

(x,y)∈H

∣

∣f(x, y) − g(x, y)
∣

∣ < ε

(b) Does the result in (a) hold if H is replaced by the disk
{

(x, y) ∈ IR2
∣

∣ x2 + y2 ≤ 1
}

?

Continued on page 10
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[15] 7. The Legendre polynomials Pn(x) : [−1, 1] → IR, n ∈ ZZ, n ≥ 0, are polynomials obeying
(i) Pn is of degree n with the coefficient of xn strictly greater than zero and

(ii)
∫ 1

−1
Pn(x)Pm(x) dx =

{

0 if n 6= m
2

2n+1 if n = m

Let f : [−1, 1] → IR be continuous and set an = 2n+1
2

∫ 1

−1
f(x)Pn(x) dx. Prove that

(a)
∑∞

n=0
2

2n+1
|an|

2 ≤
∫ 1

−1
f(x)2 dx with equality if and only if

∑N

n=0 anPn(x) converges to
f in the mean as N → ∞.

(b)
∑∞

n=0 anPn(x) converges in the mean to f(x).

Continued on page 12
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The End
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