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Marks

[18] 1. Short answers. Answer each question below. Read and think carefully. For this question
only, no explanation or justification is needed, and no credit will be given for an incorrect
answer.

(There are no typos in this question. If something looks incorrect, you should say so in your
answer.)

(a) (3 marks) True or false? If r(t) is the position at time t of an object moving in R3, and r(t) is
twice differentiable, then |r′′(t)| is the tangential component of its acceleration.

(b) (3 marks) Let r(t) is a smooth curve in R3 with unit tangent, normal and binormal vectors
T(t), N(t), B(t). Which two of these vectors span the plane normal to the curve at r(t)?

(c) (3 marks) True or false? If F = P i + Qj + Rk is a vector field on R3 such that P,Q,R have
continuous first order derivatives, and if curlF = 0 everywhere on R3, then F is conservative.

Continued on page 3
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(d) (3 marks) True or false? If F = P i + Qj + Rk is a vector field on R3 such that P,Q,R have
continuous second order derivatives, then curl(divF) = 0.

(e) (3 marks) True or false? If F is a vector field on R3 such that |F(x, y, z)| = 1 for all x, y, z, and
if S is the sphere x2 + y2 + z2 = 1, then

∫∫
S
F · dS = 4π.

(f) (3 marks) True or false? Every closed surface S in R3 is orientable. (Recall that S is closed if
it is the boundary of a solid region E.)

Continued on page 4
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[12] 2. A curve in R3 is given by the vector equation r(t) = 〈2t cos t, 2t sin t,
t3

3
〉.

(a) (6 marks) Find the length of the curve between t = 0 and t = 2.

(b) (6 marks) Find the parametric equations of the tangent line to the curve at t = π.

Continued on page 5
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[10] 3. Let C be the curve in R2 given by the graph of the function y =
x3

3
. Let κ(x) be the

curvature of C at the point (x, x3/3). Find all points where κ(x) attains its maximal values,
or else explain why such points do not exist. What are the limits of κ(x) as x → ∞ and
x→ −∞?

Continued on page 6
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[16] 4. Evaluate the line integrals below. (Use any method you like.)

(a) (8 marks)
∫
C

(x2 +y)dx+xdy, where C is the arc of the parabola y = 9−x2 from (−3, 0)
to (3, 0).

(b) (8 marks)
∫
C
F · n ds, where F(x, y) = 2x2i + yexj, C is the boundary of the square

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and n is the unit normal vector pointing outward.

Continued on page 7
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[10] 5. Let f be a function on R3 such that all its first order partial derivatives are continuous. Let
S be the surface {(x, y, z) : f(x, y, z) = c} for some c ∈ R. Assume that ∇f 6= 0 on S. Let F
be the gradient field F = ∇f .

(a) (4 marks) Let C be a piecewise smooth curve contained in S (not necessarily closed).
Must it be true that

∫
C
F · dr = 0? Explain why.

(b) (6 marks) Prove that for any vector field G,∫∫
S

(F×G) · dS = 0.

Continued on page 8
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[10] 6. Let F = (2y + 2)i be a vector field on R2. Find an oriented curve C from (0, 0) to (2, 0) such
that

∫
C
F · dr = 8.

Continued on page 9
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[24] 7. Evaluate the surface integrals. (Use any method you like.)

(a) (8 marks)

∫∫
S

z2dS, if S is the part of the cone x2 + y2 = 4z2 where 0 ≤ x ≤ y and

0 ≤ z ≤ 1.

Continued on page 10
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(b) (8 marks)

∫∫
S

F · dS, if F = zk and S is the rectangle with vertices (0, 2, 0), (0, 0, 4),

(5, 2, 0), (5, 0, 4), oriented so that the normal vector points upward.

Continued on page 11
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(c) (8 marks)

∫∫
S

F · dS, where F = (y−z2)i+(z−x2)j+z2k and S is the boundary surface

of the box 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, 0 ≤ z ≤ 3, with the normal vector pointing outward.

Continued on page 12
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(Use this blank page if you need more space.)

The End
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