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1. Consider the following types of matrices (all assumed to be square):

(A) Matrices with a basis of eigenvectors

(B) Matrices with distinct eigenvalues

(C) Matrices with repeated eigenvalues

(D) Hermitian matrices

(E) Non-zero orthogonal projection matrices

(F) Matrices of the form

[
1 a

0 1

]
with a 6= 0.

[2]

(a) Which types are always diagonalizable?

(A) 2, (B) 2, (C) 2, (D) 2, (E) 2, (F) 2

Solution:

(A) 2�, (B) 2�, (C) 2, (D) 2�, (E) 2�, (F) 2
[2]

(b) Which types are sometimes, but not always diagonalizable?

(A) 2, (B) 2, (C) 2, (D) 2, (E) 2, (F) 2

Solution:

(A) 2, (B) 2, (C) 2�, (D) 2, (E) 2, (F) 2
[2]

(c) Which types always have an orthonormal basis of eigenvectors?

(A) 2, (B) 2, (C) 2, (D) 2, (E) 2, (F) 2

Solution:

(A) 2, (B) 2, (C) 2, (D) 2�, (E) 2�, (F) 2
[2]

(d) Which types always have an eigenvalue equal to 1?

(A) 2, (B) 2, (C) 2, (D) 2, (E) 2, (F) 2

Solution:

(A) 2, (B) 2, (C) 2, (D) 2, (E) 2�, (F) 2�
[2]

(e) Every matrix of type (A) is always also of type:

(A) 2�, (B) 2, (C) 2, (D) 2, (E) 2, (F) 2

Solution:

(A) 2�, (B) 2, (C) 2, (D) 2, (E) 2, (F) 2
[2]

(f) Every matrix of type (B) is always also of type:

(A) 2, (B) 2�, (C) 2, (D) 2, (E) 2, (F) 2

Solution:

(A) 2�, (B) 2�, (C) 2, (D) 2, (E) 2, (F) 2
[2]

(g) Every matrix of type (C) is always also of type:

(A) 2, (B) 2, (C) 2�, (D) 2, (E) 2, (F) 2

Solution:

(A) 2, (B) 2, (C) 2�, (D) 2, (E) 2, (F) 2
[2]

(h) Every matrix of type (D) is always also of type:

(A) 2, (B) 2, (C) 2, (D) 2�, (E) 2, (F) 2

Solution:

(A) 2�, (B) 2, (C) 2, (D) 2�, (E) 2, (F) 2
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[2]

(i) Every matrix of type (E) is always also of type:

(A) 2, (B) 2, (C) 2, (D) 2, (E) 2�, (F) 2

Solution:

(A) 2�, (B) 2, (C) 2, (D) 2�, (E) 2�, (F) 2

[2]

(j) Every matrix of type (F) is always also of type:

(A) 2, (B) 2, (C) 2, (D) 2, (E) 2, (F) 2�

Solution:

(A) 2, (B) 2, (C) 2�, (D) 2, (E) 2, (F) 2�
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2. We wish to interpolate the points (x1, y1), (x2, y2) and (x3, y3) with x1 < x2 < x3 using a function of

the form

f(x) =

a1x2 + b1x+ c1 for x1 < x < x2

a2x
2 + b2x+ c2 for x2 < x < x3

[3]
(a) Write down the equations satisfied by a1, b1, c1, a2, b2, c2 when f(x) is continuous and passes

through the given points.

Solution:

x21a1 + x1b1 + c1 = y1

x22a1 + x2b1 + c1 = y2

x22a2 + x2b2 + c2 = y2

x23a2 + x3b2 + c2 = y3

[3]
(b) Write down the equation satisfied by a1, b1, c1, a2, b2, c2 when f ′(x) is continuous at x = x2.

Solution:

2x2a1 + b1 − 2x2a2 − b2 = 0

[3]

(c) Write down the matrix A and the vector b in the matrix equation Aa = b satisfied by a =

[a1, b1, c1, a2, b2, c2]T when the conditions of both (a) and (b) are satisfied and when x1 = 0, x2 =

1, x2 = 2, y1 = 1, y2 = 3, y3 = 2. Explain why this system of equations does not have a unique

solution.

Solution: A =


0 0 1 0 0 0

1 1 1 0 0 0

0 0 0 1 1 1

0 0 0 4 2 1

2 1 0 −2 −1 0

 and b =


1

3

3

2

0

. Since A is a 5 × 6 matrix its null space

must be at least one dimensional. This implies any solution will not be unique.
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[4]
(d) Let A and b be as in (c) and assume they have been defined in MATLAB/Octave. Using that

a=A\b computes a solution (even if it is not unique) and n=null(A) computes a vector in N(A),

write the MATLAB/Octave code that computes and plots two different interpolating functions of

the form f(x) satisfying the conditions in (a) and (b).

Solution:

a=A\b;

n=null(A);

X1=linspace(0,1,100);

plot(X1,polyval(a(1:3),X1))

hold on

X2=linspace(1,2,100);

plot(X2,polyval(a(4:6),X2))

a1=a+n

X1=linspace(0,1,100);

plot(X1,polyval(a1(1:3),X1))

hold on

X2=linspace(1,2,100);

plot(X2,polyval(a1(4:6),X2))

hold off
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3. Consider the plane S defined by 2u− 3v+w = 0, and recall that the normal to this plane is the vector

a = [2,−3, 1].
[3]

(a) Compute the projections of vectors [1, 0, 0] and [0, 1, 0] onto the line spanned by a.

Solution: The projection matrix is P = 1
‖a‖2 aa

T = 1
14

 4 −6 2

−6 9 −3

2 −3 1

 so the projections are

p1 = P

1

0

0

 = 1
14

 4

−6

2

 and p2 = P

0

1

0

 = 1
14

−6

9

−3

.

[4]
(b) Compute the projections of vectors [1, 0, 0] and [0, 1, 0] onto the subspace defined by S. What is

the inner product of each of these projections with [2,−3, 1]?

Solution: The complementary projection is Q = I−P so the projections are q1 = (I−P )

1

0

0

 =

1

0

0

− 1
14

 4

−6

2

 = 1
14

10

6

−2

 and q2 = (I−P )

0

1

0

 =

0

1

0

− 1
14

−6

9

−3

 = 1
14

6

5

3

 The inner product

of each of these projections with [2,−3, 1] is zero.
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[3]
(c) Find a basis for the subspace of R3 defined by S. What is the dimension of this subspace?

Solution: The vectors q1 and q2 form a basis. The dimension of this subspace is 2.

[6]

(d) The reflection of vector x across a subspace is (2P − I)x where I is the identity matrix and P is

the matrix projecting x onto the subspace.

i. Draw a sketch to show why this definition of reflection makes sense.

ii. What is the reflection of [1, 0, 0] in plane S?

iii. What is the matrix (2P − I)2?

Solution:

i. [sketch]

ii. The matrix P in this question is the Q of part (b). (2Q− I)

1

0

0

 = 2q1 −

1

0

0

 = 1
14

 6

12

−4


iii. (2P − I)2 = 4P 2 − 4P + I = 4P − 4P + I = I This makes sense because reflecting twice

results in the original vector.
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4. Consider the following bivariate data:

x y

-1 0

1 1

3 1

[3]
(a) Draw a sketch showing the approximate least-squares straight-line fit y = ax+ b to this data.

Solution: [sketch]

[4]

(b) Write down the least squares (or normal) equation satisfied by

[
a

b

]

Solution: The equation is ATA

[
a

b

]
= ATy where A =

−1 1

1 1

3 1

 and y =

0

1

1

. Explicitly

[
11 3

3 3

][
a

b

]
=

[
4

2

]
.

[3]
(c) What quantity is minimized by the solution to the equation in (b)?

Solution: The minimized quantity is ‖A

[
a

b

]
−y‖2 = (−a+ b− 0)2 + (a+ b− 1)2 + (3a+ b− 1)2.
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5. Consider L2[a, b], the set of square-integrable functions on the interval x ∈ [a, b].
[3]

(a) Why do we say that the basis functions e2πinx/(b−a) for n ∈ Z are orthogonal?

Solution: For n 6= m the inner products

〈e2πinx/(b−a), e2πimx/(b−a)〉 =

∫ b

a

e2πi(m−n)x/(b−a)dx

= ((b− a)/2πi(m− n))(e2πi(m−n)b/(b−a) − e2πi(m−n)a/(b−a))

= ((b− a)/2πi(m− n))e2πi(m−n)a/(b−a)(e2πi(m−n)(b−a)/(b−a))− 1)

= ((b− a)/2πi(m− n))e2πi(m−n)a/(b−a)(1− 1)

= 0.

[3]
(b) Under what conditions on a and b are these functions orthonormal? Propose a set of basis

functions for L2[a, b] that are orthonormal for any choice of a and b.

Solution: We have

‖e2πinx/(b−a)‖2 =

∫ b

a

|e2πinx/(b−a)|2dx

=

∫ b

a

1dx

= b− a.

so they are normalized if b− a = 1. The functions 1√
b−ae

2πinx/(b−a) are always orthonormal.
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[3] (c) Suppose a = 0, b = 1 and consider the function

f(x) =

 1, 0 ≤ x < 1/2,

−1, 1/2 ≤ x ≤ 1
.

Write down (but don’t bother evaluating) the integral you’d need to do to compute the Fourier

coefficients cn for f(x).

Solution:

cn =

∫ 1

0

e−2πinxf(x)dx =

∫ 1/2

0

e−2πinxdx−
∫ 1

1/2

e−2πinxdx

[3]
(d) Are the quantities cn − c−n purely real, purely imaginary, or neither? Why?

Solution:

cn − c−n =

∫ 1

0

(e−2πinx − e2πinx)f(x)dx =

∫ 1

0

(−2i) sin(2πnx)f(x)dx

is purely imaginary, since f(x) is real.

[2]

(e) What is the sum
∞∑

n=−∞
|cn|2,

where cn are the Fourier coefficients of the function in part (c)?

Solution: By Parseval’s formula this sum is equal to
∫ 1

0
|f(x)|2dx = int10dx = 1.
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6. Starting with initial values x0 and x1, let xn for n = 2, 3, . . . be defined by the recursion relation

xn+1 = axn − xn−1,

where a is a real number.
[3]

(a) When this recursion relation is written in matrix form Xn+1 = AXn, what are A and Xn?

Solution: A =

[
a −1

1 0

]
and Xn =

[
xn+1

xn

]

[3]
(b) Find the eigenvalues and eigenvectors of A. What is det(A) and what does it tell you about the

eigenvalues?

Solution: The characteristic polynomial is λ2 − aλ+ 1 = 0 so the eigenvalues are

λ± =
a±
√
a2 − 4

2
.

The eigenvectors are

v±

[
λ±

1

]
The determinant is det(A) = 1. this tells us that λ+λ− = 1.
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[3]
(c) In some applications we are interested in solutions xn where limn→∞ xn = 0. Find non-zero initial

conditions x0 and x1 that give rise to such a solution when a = 3. Solution: When a = 3 the

eigenvalues are real and positive. Since λ+λ− = 1 we know the smaller one λ− must be less than

1. Thus we choose initial conditions to be the corresponding eigenvector, i.e.,[
x1

x0

]
=

[
(3−

√
5)/2

1

]
.

[3]
(d) For which values of a do the solutions to this recursion stay bounded, neither growing or decaying

as n→∞? (You may disregard values of a for which A has repeated eigenvalues).

Solution: When the eigenvalues have a non-zero imaginary part then λ− = λ+ so |λ+|2 =

|λ−|2 = 1. In this case the solutions all stay bounded. This happens when a2 < 4 or |a| < 2.

When |a| = 2 then A has repeated eigenvalues λ+ = λ− = 1. We are ignoring this case. When

|a| > 2 then the eigenvalues are distinct and real. In this case one eigenvalue has absolute value

> 1 and the other has absolute value < 1, so there are both growing and decaying solutions.
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[3]
7. (a) Write down the definition of a stochastic (or Markov) matrix.

Solution: An n× n matrix is stochastic if (i) all entries are non-negative and (ii) the entries in

each column sum to 1. (equivalently (i) all entries lie in the interval [0, 1] and (ii) the entries in

each column sum to 1.)

[5]

(b) What can you say about the relative sizes of ‖Sv‖1 and ‖v‖1 for a stochastic matrix S? Explain

how this implies that all the eigenvalues λ of a stochastic matrix have |λ| ≤ 1. Is it possible that

all eigenvalues have |λ| < 1? Give a reason. What is ‖S‖1 (i.e., the matrix norm when both input

and output are measured with the 1-norm, also denoted ‖S‖1,1)?

Solution: We know a stochastic matrix S does not increase the 1-norm, that is, for any vector

v, ‖Sv‖1 ≤ ‖v‖1. If λ is an eigenvalue with eigenvector v then Sv = λv and so ‖Sv‖1 =

‖λv‖1 = |λ|‖v‖1. Thus the inequality implies |λ|‖v‖1 ≤ ‖v‖1. Since ‖v‖1 6= 0 we can divide to

obtain |λ| ≤ 1. Every stochastic matrix has 1 as an eigenvalue, therefore it is not possible that

all eigenvalues have |λ| < 1. The matrix norm ‖S‖1 = 1 since the inequality above implies that

‖S‖1 ≤ 1 and the fact that 1 is an eigenvalue implies that ‖S‖1 ≥ 1

[3]

(c) What can you say about the eigenvalues of a stochastic matrix S if limn→∞ Sn does not exist.

Give an example of a stochastic matrix like this.

Solution: In this case there must be at least two eigenvalues on the unit circle. An example is

S =

[
0 1

1 0

]
which has eigenvalues 1 and −1.
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[4] (d) Consider the following internet.

4

1 2 3

5 6

In this diagram the links depicted by dashed arrows are displayed prominently and are therefore

twice as likely to be followed than the remaining links on the page. Write down (i) the stochastic

matrix associated to this internet with no damping and (ii) the first column of the stochastic

matrix associated to this internet with damping factor 1/2. Explain how you could use the eig

command in MATLAB/Octave to compute the limiting probabilies of landing on each site.

Solution: With no damping: S =



0 1/3 0 1 0 1/6

2/3 0 1/4 0 0 1/6

0 1/3 0 0 1/2 1/6

1/3 0 0 0 0 1/6

0 1/3 1/4 0 0 1/6

0 0 1/2 0 1/2 1/6


.

With damping factor 1/2 the first column of S is S =



1/12 . . .

5/12 . . .

1/12 . . .

3/12 . . .

1/12 . . .

1/12 . . .


.

If S is defined in MATLAB/Octave, [V,D]=eig(S) computes the eigenvectors and eigenvalues.

Assuming that the first diagonal entry of D is the eigenvalue 1, V(:,1)/sum(V(:,1)) computes

the limiting probabilities.
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