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Marks

[15] 1. Let

A =





1 0 0
0 a 0
0 0 2



 ,

where a is a real number.

(a) [4] For what values of a (if any) does the matrix norm have the value ‖A‖ = 2?

(b) [2] For what values of a (if any) is cond(A) not defined? Give a reason.

(c) [2] For what values of a (if any) is cond(A) = 1/2? Give a reason.

Continued on page 3
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(d) [4] Sketch a graph of cond(A) as a function of a for −∞ < a < ∞.

(e) [3] For what values of a (if any) is cond(A) = 4?

Continued on page 4
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[15] 2. Suppose that

A =







1 1 0 1 0
2 2 1 3 0
3 3 1 4 1
4 4 1 5 1






rref(A) =







1 1 0 1 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0







(a) [3] Write down a basis for R(A)

(b) [3] Write down a basis for N(A)

(c) [3] Write down a basis for R(AT )

(d) [3] What are rank(A) and dim(N(AT ))?

(e) [3] Write down the MATLAB/Octave commands that would compute the projection of






1
0
0
0






onto R(A).

Continued on page 5
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[12] 3. Suppose we are given 4 points (x1, y1), (x2, y2), (x3, y3) and (x4, y4) in the plane and we
want to find a function f(x), defined for x1 ≤ x ≤ x4, whose graph interpolates these points.
Assume that

f(x) =







p1(x) for x1 ≤ x ≤ x2

p2(x) for x2 ≤ x ≤ x3

p3(x) for x3 ≤ x ≤ x4

where each pi(x) is a polynomial.

(a) [3] What equations, written in terms of pi(x) and possibly their derivatives, express the
condition that f(x) goes through the given points? Do these equations imply that f(x)
is continuous?

(b) [3] What equations, written in terms of pi(x) and possibly their derivatives, express the
condition that f ′(x) is continuous?

(c) [3] What equations, written in terms of pi(x) and possibly their derivatives, express the
condition that f ′′(x) is continuous?

(d) [3] When each pi(x) is a cubic polynomial of the form ai(x−xi)
3+bi(x−xi)

2+ci(x−xi)+di
the equations written in parts (a), (b) and (c) above are equivalent to a system of linear
equations in the unknowns ai, bi, ci and di, i = 1, 2, 3. How many more equations are
needed if there are to be the same number of equations as unknowns? What equations
are usually added and why?

Continued on page 6
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[10] 4. In this question we are once again given 4 points (x1, y1), (x2, y2), (x3, y3) and (x4, y4) in the
plane. This time we want to find a quadratic function q(x) = ax2 + bx+ c that comes closest
to going through the points by doing a least squares fit.

(a) [5] The least squares equation you need to solve to find the coeficients a, b and c has the
form ATAa = ATb. Write down expressions for A, a, and b.

(b) [5] Suppose the points (xi, yi) have been defined in MATLAB/Octave as X1, . . ., X4,

Y1, . . . Y4. Write down the MATLAB/Octave code that plots these points, then com-
putes q(x), and finally plots q(x).

Continued on page 7
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[15] 5. Define a sequence x0, x1, . . . by the initial conditions x0 = a, x1 = b and x2 = c together with
the recursion relation

xn+3 = xn+2 + xn+1 + xn

for n = 0, 1, 2, . . ..

(a) [7] Rewrite this recursion in matrix form Xn+1 = AXn for n = 0, 1, 2, . . . for a sequence
Xn of vectors, with an initial vector X0 and some matrix A.

Continued on page 8
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(b) [5] If the matrix A from part (a) is defined in MATLAB/Octave, we can do the following
calculations:

>eig(A) > abs(eig(A))

ans = ans =

1.83929 + 0.00000i 1.83929

-0.41964 + 0.60629i 0.73735

-0.41964 - 0.60629i 0.73735

Describe how you could make further use of the eig command and other MATLAB/Octave com-
mands to determine all (possibly complex) initial values a, b and c for which xn → 0 as n → ∞.

(c) [3] Explain how you could ensure that the a, b and c you find in part (b) are real numbers.

Continued on page 9
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[18] 6.

(a) [3] Determine the coefficients cn in the expansion f(x) =
∑

∞

n=−∞
cne

2πinx, where f(x) =
x and 0 ≤ x ≤ 1.

(b) [3] Calculate the inner product 〈f(x), f(x)〉 for f(x) = x on the interval 0 ≤ x ≤ 1, using
the definition of the inner product for functions.

Continued on page 10
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(c) [3] Explain how the orthogonality of the functions e2πinx allows you to relate the inner

product in part (b) to the sum

∞
∑

n=−∞

|cn|
2. Use your answer to to calculate the infinite

sum
∞
∑

n=1

n−2.

(d) [3] What points in the plane would you plot to produce a frequency-amplitude plot for
the function in part (a)?

Continued on page 11
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(e) [3] Explain how you could use the fft command in MATLAB/Octave to compute ap-
proximations to the coefficients cn in part (a). Write down the commands you would use,
and say for what values of n you would expect your approximations to be most accurate.

(f) [3] Suppose you expanded the same function f(x) = x as in part (a) except on the interval
0 ≤ x ≤ 2. What would be the form (i.e., do not compute the coefficients) of the Fourier
series valid for this interval. What points on the plane would you plot to produce a
frequency-amplitude plot from this new Fourier series? (Give the answer in terms of the
coefficients in the new expansion.)

Continued on page 12
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[15] 7. Suppose A is a symmetric 4× 4 matrix with eigenvalues 0, 1, 4, 5. Define a sequence of vectors
xn ∈ R

4 by choosing x0 at random, and then setting

yn = (A− 3I)−1xn−1

xn = yn/‖yn‖

for n = 1, 2, . . .. You then observe that xn converges to x∞ = [1/2, 1/2, 1/2, 1/2]T as n → ∞.

(a) [0] What is Ax∞?

(b) [0] What is the value of the inner (dot) product 〈x∞, Ax∞〉?

(c) [0] What vector does yn converge to?

The End
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