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[15pt] 1. Consider the symmetric matrix

B =


2 −2 0 4

−2 3 2 1
0 2 3 3
4 1 3 2



[10] (a) Find the LDU decomposition of B.

[5] (b) Find the number of positive and negative eigenvalues of B.
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[20pt] 2. Let V denote the row space of the matrix 1 1 0
2 0 1
1 5 −2


[5] (a) Find bases of V and V ⊥.

[5] (b) Find the matrix of the projection P : R3 → R3 of R3 onto V .

[5] (c) Find the orthogonal sum decomposition (1, 1, − 1)T = v + w where v ∈ V
and w ∈ V ⊥.

[5] (d) Find the distance from (1, 1, − 1)T to V .
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[15pt] 3. Let P be a real symmetric n× n matrix such that P 2 = P . Also, let R = In − 2P .

[5] (a) Show that R is an orthogonal matrix and that R2 = In.

[5] (b) If P is the matrix of the projection of Rn onto a subspace V and if Q is the matrix
of the projection of Rn onto the orthogonal complement V ⊥, explain (either algebraically or
geometrically) why PQ = O and RQ = Q.

[5] (c) Find the eigenvalues of R and give a description of the corresponding eigenspaces.
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[20pt] 4. Consider the following 3× 6 matrix over the field F2:

A =

0 1 1 1 1 0
1 0 1 1 0 1
1 0 0 1 1 0

 .

[5] (a) Find a basis for the null space N (A).

[5] (b) Let C be the binary code consisting of all 6-bit strings c so that cT is in N (A). Find
the minimal distance d(C) of C.

[5] (c) Find the unique codeword nearest 000101.

[5] (d) Find an example of a vector in (F2)
6 which does not have a unique nearest codeword.
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[15pt] 5. Find AN for any positive integer N when A is the matrix

A =

(
3 −2
1 0

)
.
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[15pt] 6. Let B be the basis {v1,v2,v3} of R3, where

v1 = (1, 0, 0)T , v2 = (1, 1, 0)T , v3 = (1, 1, 1)T ,

and let T : R3 → R3 be the linear transformation such that

MB
B(T ) =

 2 −3 3
−2 1 −7
5 −5 7

 .

[7] (a) Find T (v3).

[8] (b) Calculate the matrix of T with respect to the standard basis {e1, e2, e3} of R3. You
may leave your answer unsimplified.
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[10pt] 7. Determine whether or not the following two matrices are similar:

A =

 1 −1 −1
1 3 1
−1 −1 1

 and B =

2 0 0
0 1 1
0 0 2

 .
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[20pt] 8. Answer the following questions by filling in the blanks to get a correct mathematical
theorem, statement or definition.

(a) Every n×n matrix A over the complex numbers can be expressed in the form A = UTU−1,

where T is and U is unitary.

(b) Every Hermitian matrix can be expressed in the form A = PRP−1, where P is

and R is a diagonal matrix.

(c) Every real m× n matrix A of rank can be expressed in the form A = QR, where

Q has orthogonal , R is upper triangular and the determinant of R is

.

(d) If all eigenvalues of an n× n complex matrix A are zero, then An = .

(e) A complex matrix A is normal if and only if .

(f) If A is a real matrix, then the column space of A is the orthogonal complement to the

space of .
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9. True or False: two points for the right answer and 2 more points for also giving a correct
reason.

(a) Every permutation matrix is diagonalizable.

(b) The matrix


2 1 0 0
−1 2 −1 3
0 1 −1 0
0 3 0 1

 is positive definite.

(c) If Ax = b for some x and ATy = 0, then yTb = 0.

(Continued on the next page)
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(d) Every matrix similar to a Hermitian matrix is normal.

(e) If P is a positive definite matrix, then all entries of P are non-negative.
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Scratchwork


