This final exam has **9 questions** on **16 pages**, for a total of 100 marks.

Duration: 2 hours 30 minutes

Full Name (including all middle names):	
Student-No:	
Signature:	

UBC Rules governing examinations:

- 1. Each candidate should be prepared to produce his/her library/AMS card upon request.
- 2. No candidate shall be permitted to enter the examination room after the expiration of one half hour, or to leave during the first half hour or the *last 15 minutes* of the examination. Candidates are not permitted to ask questions of the invigilators, except in cases of supposed errors or ambiguities in the examination questions.
- 3. Candidates guilty of any of the following or similar practices shall be immediately dismissed from the examination, and shall be liable to disciplinary action:
 - a) Making use of any books, papers or memoranda, other than those authorised by the examiners.
 - b) Speaking or communicating with other candidates.
 - c) Purposely exposing written papers to the view of other candidates. The plea of accident or forgetfulness will not be received.
- 4. Smoking is not permitted during examinations.

Question:	1	2	3	4	5	6	7	8	9	Total
Points:	15	8	8	12	15	10	10	12	10	100
Score:										

Please read the following points carefully before starting to write.

- Give complete arguments and explanations for all your calculations; answers without justifications will not be marked except where specifically stated.
- This is a closed-book examination. **None of the following are allowed**: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.).
- You may not leave during the first 30 minutes or final 15 minutes of the exam.
- Read all the questions carefully before starting to work.
- Continue on the back of the previous page if you run out of space.

- 1. Please give precise answers to the following:
 - (a) Let $f:A\to B$ be a function and let $C\subseteq A$ and $D\subseteq B$. Define the sets $f^{-1}(D)$ and f(C).

(b) Define what it means for a function to be injective.

(c) Define what it means for a function to be surjective.

(d) Define what it means for a set to be countable.

(e) State De Morgan's laws (in the context of logic).

(f) State the principle of mathematical induction.

(g) Define the sets $X = \bigcap_{\alpha \in I} S_{\alpha}$ and $Y = \bigcup_{\alpha \in I} S_{\alpha}$.

(h) Define the supremum of a set $A \subseteq \mathbb{R}$.

(i) Define what it means for the sequence $\{c_n\}$ to converge.

(j) Define what it means for the sequence $\{c_n\}$ to diverge to infinity.

2. (a) Write the negation of the following statement:

$$\forall x \in \mathbb{Z}$$
, if $x > 0$ then $\exists y \in \mathbb{Q}$ s.t. $x^2 > y$.

(b) Let A, B, C be sets. Prove the following distributive law from first principles:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

- 3. Let $f:A\to B$ be a function and let $C\subseteq A.$
 - (a) Give an example for which $f^{-1}(f(C)) \not\subseteq C$.
 - (b) Now let $E \subseteq A$. Prove that if f is injective then $f(C \cap E) = f(C) \cap f(E)$.

- 4. (a) Prove that $f:[3,\infty)\to[5,\infty)$ defined by $f(x)=x^2-6x+14$ is a bijection.
 - (b) Prove that if A is a denumerable subset of \mathbb{Z} then there exists a set B such that B is a proper subset of A and |A| = |B|.

5. Use mathematical induction to prove the following statements:

(a) for all
$$n \in \mathbb{N}$$
, $1 \cdot 2^1 + 3 \cdot 2^2 + 5 \cdot 2^3 + \dots + (2n-1) \cdot 2^n = 6 + 2^n (4n-6)$.

- (b) for all non-negative integers n, $5^{n} + 2(11^{n})$ is a multiple of 3.
- (c) for all $n \in \mathbb{N}$, $\sum_{j=1}^{n} j^3 > \frac{1}{4}n^4$.

- 6. Let \mathbb{I} be the set of irrational numbers. That is $\mathbb{I} = \mathbb{R} \mathbb{Q}$.
 - (a) Prove the following statements:
 - (i) Let $x \in \mathbb{R}$. If $x \in \mathbb{I}$ then $1/x \in \mathbb{I}$.
 - (ii) Let $n \in \mathbb{Z}$ and $x \in \mathbb{R}$. If $x \in \mathbb{I}$ then $n + x \in \mathbb{I}$.
 - (b) Decide whether the following statements are true or false. Prove your answers. **Hint:** The results from (a) will be of great help.
 - (i) $\forall x \in \mathbb{I}, \forall y \in \mathbb{I}, xy \in \mathbb{I}.$
 - (ii) $\forall x \in \mathbb{I}, \exists y \in \mathbb{I} \text{ s.t. } xy \in \mathbb{I}.$

7. Decide whether the following sequences converge or diverge. Prove your answers using the definition of convergence.

(a)
$$a_n = \cos\left(\frac{n\pi}{3}\right)$$

(b)
$$b_n = \frac{3n^2 - 4n}{n^2 + 5n + 2}$$

- 8. (a) Suppose that $s_n \to 0$. Prove that if t_n is a bounded sequence then $\lim_{n \to \infty} (s_n t_n) = 0$.
 - (b) Let s_n be a convergent sequence such that $s_n < q$ for all $n \in \mathbb{N}$. Prove that $\lim_{n \to \infty} s_n \le q$.

9. (a) Find the supremum, maximum, infimum and minimum of the following subsets of \mathbb{R} (if they exist). If they do not exist write "none". You do not need to justify your answers.

set	supremum	maximum	infimum	minimum
$\begin{cases} \{ x \in \mathbb{R} \text{ s.t. } 7 < x \le 10 \} \end{cases}$				
$\{x \in \mathbb{Q} \text{ s.t. } x^2 < 3\}$				
$\{x \in \mathbb{Z} \text{ s.t. } x^2 < 3\}$				
$\bigcap_{n=1}^{\infty} \left(1 - 1/n, 4 + 1/\sqrt{n}\right)$				

(b) Let A be a non-empty proper subset of (0,3). Note $A \neq (0,3)$. Define

$$B = \{ -a \text{ s.t. } a \in A \}$$

- (i) Prove that $\inf A$ and $\sup A$ exist using the Completeness Axiom.
- (ii) Prove that $(-\inf A)$ is an upper bound for B.
- (iii) Prove that $\sup B = (-\inf A)$.