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This examination has 3 pages.

The University of British Columbia

Final Examination — 12 December 2006

Mathematics 217

Multivariable and Vector Calculus

Closed book examination Time: 150 minutes

Special Instructions: To receive full credit, all answers must be supported with clear and correct derivations.
No calculators, notes, or other aids are allowed. A formula sheet is provided with the test.

1. A laser fired from the origin strikes the point P(1,1,3) on the mirrored surface
2=6—(z—2)% -2y —2)>
Find the point where the reflected beam strikes the plane z = 6.

Hint: The component of the incident beam direction that is normal to the mirror gets reversed by reflection;
the component parallel to the mirror is unchanged.

2.  Astronaut Alpha patrols Sector Zero, the plane region x > 0, monitoring Cosmic Disorder (CD). The
true CD density at point (x,y) is given by a function Alpha does not know, namely,
Fla,y) = atye ™ 72",

However, Alpha’s ship carries instruments that measure f(z,y) and Vf(z,y) when it is at (z,y).
(a) Find and classify the critical points of f in Sector Zero.

(b) Alpha flies a mission where the ship’s coordinates at time ¢ are given by
x =cos(t), y=2sin(t), t>0.

As Alpha passes through the point P (%, \/g), does the on-board CD detector indicate that CD is
increasing or decreasing? At what rate?

(¢) What direction should Alpha fly from P to maximize the instantaneous rate of increase in CD?
What is the angle between this direction and the line from P to the point of maximum CD?
(Note: A calculator-ready numerical expression for the cosine of the requested angle is fully
acceptable.)

Continued on page 2
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3.

4.

5.

7.

Given a > 0, consider the triangle D whose vertices are (0,0), (0,a), (2a,a). Define a surface S by
z=1+3z+ 2%

(a) Find the plane tangent to S at the point where z = a and y = a.

(b) Find the area of the part of the tangent plane that lies above D. Call this area (3(a).

(¢) Find the area of the part of the surface S that lies above D. Call this area v(a).

(d) [OPTIONAL BONUS QUESTION]  Prove: lim

9 VT . 18 vI8—y .
Evaluate I:/ / ye?™ % dy dy+/ / ye2™ % dg dy.
0o Jo 9 Jo

Let C denote the closed loop in which the cylinder 22 + y? = 2az meets the plane z = y. Given
F=yi+tan'2j+ (1 +2H)k, a >0,

find the work done by F acting around C. Orient C counterclockwise when viewed from above.

Let F(z,y,2) = (y2 cosz)i+ (— zy®sin z) k.
(a) Prove that F is not conservative.

(b) Find a scalar field Q = Q(x,y, z) such that G is conservative, where
G(z,y,2) = F(z,y,2) + Q(,y, 2)].

(c) FindW:/FOdr, given C: r =cost, y=sint, z=t, 0<t<m/2
c

Evaluate the flux I = // F e dS in each of the situations below.
s

a 1s the boundary surface for the solid cylinder £ = {(z,y,2) : °+y" <a”, 0 <2< , an
S is the boundary surface for th lid cylinder £ Y 2y2 20 H d

F(x,y,2) = <_yzeacyzszeacyz,xy2ez + 22> .

(b) S={(z,9,2) : 0<z=9— z? — yz} and F = (zy, yz, zz). (Use upward orientation on S.)

c is the two-part surface with bottom z = v/z? + 32 and top z = /a? — 22 — y2, an
S is th t surf; ith bott 2+ y2and t 2— 22 —y? and

F = <a:y2, yz2, zz2>.

Continued on page 3
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[12] 8. Suppose the following equations parametrize a smooth closed curve C' in the plane z = H:
x=f(u), y=gu), z=H, a<u<b.

Assume that H > 0, and that the parametrization gives a counterclockwise direction of motion around
C when viewed from above. Let D denote the plane region enclosed by the curve C.

(a) Write a single integral with respect to u that returns the area of D. Call this area A.

(b) Let S denote the surface generated by all line segments joining the origin to a point on the curve
C. Parametrize S.

(¢c) Prove that the flux of F(z,y, z) = w(x,y, z) (xi + yj + zk) across S equals zero for every smooth
scalar field w.

(d) Let E denote the solid enclosed by the plane region D and the surface S; write V' = Vol(FE).
Prove:

1
V =-AH.
3

[Hint: Find a way to use the vector field in part (c¢) with w(z,y,z) = 1.]

[100] Total Marks

The End



MATH 217 FORMULAS FOR FINAL EXAMINATION, 12 DECEMBER 2006

VECTOR IDENTITIES
For u = wii+ ugj + usk, v =wvii+ vaj + vsk, w = wii + waj + wsk,
ik
ue v =ujv + ugvs + uzvs = [uf|v|cos(d), 0<0<m uxv=|u; uz us|=(ugvz—uzve)i+ (usvi—uiv3)j+(u1v2 —ugvi)k
U1 V2 Us
Length of u:  |u| = Vueu = \/u? +u} + u} Angle between u and v: 6 = cos ™ (%) , 0<0<~
ullv
Triple product identities: ue(viw)=ve(wxu)=we(uxv) ux (vxw)=(uew)v— (uev)w

DISTANCES AND PROJECTIONS

Az B Czy—D
Point (x0, yo, 20) to plane Az + By + Cz = D: s = | Azo + Byo + Cz I

F = proj,(F) + orth,(F)

VA2 + B2+ C?
- F
Point rg = (o, Yo, 20) to line r =ry + tv: 5= [ro = r4) x v} proj,(F) = ( ° u> u
vl ueu
- F—-(F
Line r =r; +tv; toline r =ry + tva: s = w orth,(F) =F — proj,(F) = M
[vi X va ueu

VECTOR-VALUED FUNCTIONS OF ONE VARIABLE

L () = X (1ult) + A0 (1) % (u(t) o V(1) = W(1) 0 v(0) 4 ud) V(1) T (a(t) X ¥{0) = W (1) X ¥(0) + u(t) V(1)

& (@A) = X O@) g =m0 20

Position r = r(¢) gives velocity v(t) = r'(t), speed v(t) = |v(t)|, acceleration a(t) = v/'(t) =" (t) = (%) T+ %ZN, T= |:_|

ds = v(t) dt = |v(t)] dt = ‘z = |dr| dr = %dt v(t)dt = <% % %> dt = (dz, dy, dz) dt

APPROXIMATIONS

Differentiability test for scalar field f at a: 0= )1(13; ‘fEX;‘, where E(x) = f(x)— f(a) — Vf(a)e (x—a)

Tangent Hyperplane for G(x) = 0 at a: 0=VG(a)e (x —a) (a line in R?; a plane in R?; a hyperplane in R")
Linearization of f around a: F(%) ~ L(x) for x ~ a, where L(x) = f(a) + (x — a) e Vf(a)

Differentials (case x € R3): dffa—fdJLer—fd +a—fd27Vf dr Af~—fA +d—fA +d—fAz7Vf Ar
Quadratic Approx, for (z,y) € R? near (a,b): f(z,y) ~ Q(z,y) = f(a,b) + fi(a,b)(z — a) + f2(a,b)(y — b)

+3 {fu(a, b)(z — a)® + faz(a, b)(y — b)? + 2f12(a, b)(z — a)(y — b)

SECOND DERIVATIVE TEST FOR (a,b) WHERE V£ (a, b) = (0,0)

fu(z,y) flz(%y?/)] [A B} )
H(z.v) = H(a,b) = A = det(H(a,b)) = AD — B
(z,y) for(z,y)  for(m,y) (a,b) B D et(H(a,b))
A <0 = saddle A>0,4A>0 = loc min A>0,A<0 = loc max
DERIVATIVES

L0 .0 g /o 9 0 _ . .
V=igotig, Tk, = <E’ 5 5> F(z,y.2) = Fi(2,y,2)i + Fa(z,9,2)] + Fs(z,9,2) k

v s) = 99,00, 09 v 2) = div F(z. 1 OF, | 0F  OFs
Vo(z,y,z) = grad ¢(z,y,2) = 8:L‘l+ 8y'l+ e k VeF(x,y,2z)=div F(z,y,2) = — or | 9y | 02

i j k
o 2) = vy )= | L O O |_ (0F Ok, (0FR OF\. (0F OR
V x F(z,y,2) = curl F(z,y, z) = 9r Oy 0:|T ( oy P i+ P o j+ o 9 k
B B
V(o) = ¢pVip + Ve Ve(FxG)=(VxF)eG—-—Fe(VxG)
Ve (¢F)=(Vp)eF +¢(VeF) Vx(FxG)=F(VeG)—-G(VeF)— (FeV )G+ (GeV)F
V x (¢F) = (Vp) x F+ ¢ (V x F) VIFeG)=Fx(VXG)+GXx(VxF)+ (FeV )G+ (GeV)F
x (V¢)=0 (curlgrad = 0) Ve(VxF)=0 (div curl = 0)
2, 32¢> P¢ | 9% 2 . .
Vo(z,y,2) =V e Vo(z,y,2) =divgradp = —— + F¥l + 522 Vx(VxF)=V(VeF)—-V-F (curlcurl = grad div — laplacian)
y z
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SURFACE NORMALS AND AREA ELEMENTS

. or Or o~ n or Or
r = r(u,v) (parametrized surface): = (d—u X $> ; N= :l:m dS ==+ (% X %) du dv
G(z,y,z) =0 (smooth level surface): n=VG(z,y,z); N= :t% ds = i% dx dy
n n n _— N
dS = ——dovdy = ——— dvdz = ——— dydz for other projections dS =NdS; dS =|dS|
[n e k| nej| nei

POLAR AND CYLINDRICAL COORDINATES

Transformation: © = rcosf, y=rsinf, z=z

Position vector: r = rcosfi+ rsinfj+ zk
Volume element: dV = rdrdf dz Surface area element (on r =a): dS = adfdz
Surface area element (on z = 0): dS =rdrdf

SPHERICAL COORDINATES

Transformation: = = psin¢cosf, y = psingsinf, z = pcos¢

Position vector: r = psin¢ cosfi+ psin¢gsinf j + p cos gk
Volume element: dV = p*sin ¢ dp dé d Surface area element (on p = a): dS = a”sin ¢ df do

INTEGRATING DERIVATIVES: THE FUNDAMENTAL THEOREM OF CALCULUS

/ F(t)dt = £(b) - f(a)

/ Ve dr=¢(r(b)) — ¢(r(a)), if C is the curve r =r(t),a <t < b F(z,y,2) = P(z,y,2)i+Q(z,y, 2)j+R(z,y, 2)k

(the one-dimensional Fundamental Theorem)

OP
// (3—? — ?Ty) dA = 7{ Fedr = 7{ P(z,y)dx + Q(z,y) dy, where 0D is the positively oriented boundary of D (Green’s Theorem)
'z [ oD oD

// VxFeNdS = f Fedr = 7{ P(z,y,2)dz+Q(z,y, z) dy+ R(z,y, z) dz, where S is the oriented boundary of S (Stokes’s Theorem)
s as as

/ / VeFdV = # F ¢ N dS, where OF is the closed boundary of E, with outward unit normal N (Divergence Theorem)
E oOE

AVERAGE VALUES FOR FUNCTION f ON CURVE C, FUNCTION g ON SURFACE S, FUNCTION h ON SOLID E

/fdg | e

SINGLE INTEGRALS

Qi b,» m b,» b,» 7l b/. azr
/xsin(bac) dz = bmb(ZL) - &b(” /]‘CO‘;(b.T) dx = Cosb(2 2) + “%M /xe'“ dzx = ea—z(ar -1)
P e (asinbr — beosbx) e (acosbx + bsinbx) x L/
/e sin(bx) de = 21 /e cos(bz) dz = pEa T = sin (a)
z 1 . c 1
/Seczmdz=tanx /Sin%cdx:z—fsinbc /coszmdz=£+fsin?x+c
2 4 2 4
.. 3 1 3 3 B L. 3
tanz dz = In|secz| sin® z do = < cos” x — cosw cos mdz:smx—gsm T
dx 1 T dx 1 r+a
2 o — Ztan 't - —
/tan rdr =tanzr —x /a2+x2 atdn o (a>0) /(12_362 2aln x—a" (a>0)
dx _ T dx (T o) T e a®> .
/(az,wz)s/z NG N7 R (E) (@>0) / —otde =gVt -t osin (Z)
dx +x dx T a?
— Va2 + a2 Vi +alde = S/ 2 a2+ 2 Va2 & a2
/(]Jzi(lz)g/Q_a?\/m WEl 111‘T+ T ia‘ / z?2 £ a?dx g VT *a inn‘m-&— T ia’
/2 /2 /2 ; o /2 p )
/ sinx dx = / coswdr =1 / sin’ x da = / cos?wdr = — / sin® z da / cos® wdr = =
0 0 0 0 4 0 0 3
/2 o /2 3 /2 - o /2 - ] 5
/ sin* @ do = / costadr = 2% / sin® z dx = / cos’ xdr = — / sin® x dx / cosS zdz = X
0 0 16 0 0 15 0 0 32
TRIGONOMETRIC IDENTITIES
sin?z 4 cos?x = 1 sin(—z) = —sinz cos(—x) = cosx
< tanx £t
sec?z =1 +tan’x esc?x =1+ cot?x tan(z + y) anr=tany

sin(z £ y) = sinz cosy £ cosx siny

1 —cos2x
2

sin(0) =0 = cos(g)

sin?z =

cos(z + y) = coszcosy Fsinzsiny

1+ cos2x
2

an(5) -3 =on(3)

cos’x =

1Ftanztany
=1=cos(0)

=]

2.
=]
TN TN TN
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Adapted from R. A. Adams, Calculus,

?bwm NEECR

Complete Course, Addison-Wesley, 2003.

Typeset at 22:34 December 11, 2006.



