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Abstract

Assuming as familiar the definition of an admissible representation of a linear connected reductive
group, and that K-finite matrix coefficients of such representations are eigenfunctions of the universal
enveloping algebra, we examine constructibility of matrix coefficients. While not matrix coefficients are
in general not constructible, the real and complex parts of their associated τ -spherical functions can be
viewed as linear combinations of functions z 7→ zs with constructible coefficients. To this end we examine
the monodromy of the system of differential equations associated to a τ -spherical function. After putting
coordinates on the group in question, we obtain the above result. We conclude with a detailed example
for SL(2,R).
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1 Introduction

1.1 Project summary

This summer I worked with Prof. Julia Gordon to determine to what extent matrix coefficients of certain
representations of Lie groups were constructible in the sense of [2]. This would allow an asymptotic expansion
for matrix coefficients classically arrived at after much work to be obtained automatically via existing model
theory results. The project sits within the fields of representation theory and model theory. The project was
a continuation of the reading course I took under the supervision of Prof. Gordon during the fall and spring
semesters of the previous academic year. It is this course that I learned the prerequisites listed in subsection
1.2; a summary of the major relevant results in contained in the report I completed for that course.

As stated in the abstract, we determined that in general neither matrix coefficients nor τ -spherical
functions were constructible. Other potential avenues of research related to orbital integrals or working in
logical language with an added symbol for each function z 7→ zs where proposed, and we are currently in the
preliminary stages of examining orbital integrals.

1.2 Statement of prerequisites

For reasons of economy of space, we assume the following background: Generalities about linear connected
reductive groups G; the Peter-Weyl theorem and its consequences for arbitrary compact Lie groups; the
universal enveloping algebra as the (associative) algebra of all differential operators on G; admissible
representations of G and K-finite vectors, where K ⊂ G is the subgroup fixed by the Cartan involution; and
C∞ vectors. The main result we will start from is

Theorem 1. K-finite matrix coefficients for admissible irreducible representations of G are eigenfunctions
for the centre of the universal enveloping algebra Z(gC).

1.3 Notation

We will fix now the following notation:

Definition 1. We fix here the notation used throughout the rest of this essay.

1. G = Our group of real of complex matrices stable under conjugate transpose;

2. g = the Lie algebra of G, gC = g⊗R C when g is a Lie algebra of real matrices;

3. Θ: G→ G, Θ: g 7→ g−1
T

is our Cartan involution;

4. θ : g→ g, θ : X 7→ −XT
is therefore the Cartan involution on g.

5. Σ = the (restricted) root system for gC, Σ+ = the positive roots;

6. ∆ = a base for Σ, i.e., a choice of positive simple roots;
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7. W = the Weyl group for Σ;

8. K =
{
g ∈ G

∣∣ (gtr)−1 = g
}

, the fixed points of the Cartan involution;

9. k = {X ∈ sl(2,R) | θ(X) = X}, the Lie algebra for K;

10. p = {X ∈ sl(2,R) | θ(X) = −X};

11. a = a maximal abelian subspace of p;

12. a+, a− = the positive and negative Weyl chambers, identified via the Killing form;

13. M = ZK(a), the centraliser in K of a;

14. m = Zk(a), the Lie algebra for M ;

15. n = ⊕λ∈Σ+gλ. For the usual choices this makes n strictly upper triangular, hence nilpotent.

16. A = group with Lie algebra a. After the usual choices, A =




a11 0 · · · 0

0 a22 · · ·
...

...
...

. . . 0
0 0 · · · ann

 ∈ G
∣∣∣∣∣∣∣∣∣∣
aii ∈ R, aii > 0

;

17. A± = exp a±;

18. N = group with Lie algebra n. After the usual choices, N =




1
0 1 ∗
...

...
. . .

0 0 · · · 1

 ∈ G
;

Definition 2. In the case where G = SL(2,R), this notation specializes to, after making the standard choice
of base for g,

1. G = SL(2,R);

2. Σ =

{
α,−α

∣∣∣∣α :

(
t 0
0 −t

)
7→ 2t

}
;

3. Σ+ = ∆ = {α};

4. K = SO(2) =
{
g ∈ SL(2,R)

∣∣ (gtr)−1 = g
}

;

5. M =

{(
−1 0
0 −1

)
,

(
1 0
0 1

)}
;

6. A =

{(
t 0
0 t−1

)
∈ SL(2,R)

∣∣∣∣ t > 0

}
;

7. A+ =

{(
t 0
0 t−1

)
∈ SL(2,R)

∣∣∣∣ t > 1

}
= exp a+;

8. A− =

{(
t 0
0 t−1

)
∈ SL(2,R)

∣∣∣∣ 1 > t > 0

}
= exp a−;

9. N =

{(
1 ∗
0 1

)
∈ SL(2,R)

}
;

10. g = sl(2,R), gC = sl(2,C);
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11. In g, h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
;

12. k = {X ∈ sl(2,R) | θ(X) = X} =

{(
0 b
−b 0

) ∣∣∣∣ b ∈ R
}

= so(2);

13. p = {X ∈ sl(2,R) | θ(X) = −X} =

{(
a b
b c

) ∣∣∣∣ b ∈ R
}

;

14. m = ∅;

15. a = diagonal matricies in sl(2,R);

16. a+ = (0,∞) as identified by the Killing form;

17. a− = (−∞, 0) as identified by the Killing form;

18. n = strictly upper triangular matricies in sl(2,R).

2 Matrix coeffcients

2.1 τ-spherical functions

Let τi be representations of K on finite-dimensional vector spaces Ui for i ∈ {1, 2}.

Definition 3. A function F in C∞(G,HomC(U2, U1)) is τ -spherical if for all k1, k2 ∈ K,

F (k1xk2) = τ1(k1)F (x)τ2(k2).

One remarks immediately that such functions are determined by their values on A, as we have the
decomposition G = KAK. By smoothness, we in fact have that F is determined by its values on A+, as
G(0) = KA+K is an open dense subset of G, because we can view the Weyl group as a subquotient of K and
the Weyl group transitively on Weyl chambers. We set

C∞τ (G(0)) =
{
F ∈ C∞(G(0),HomC(U2, U1)

∣∣∣F (k1xk2) = τ1(k1)F (x)τ2(k2)
}
.

A function in C∞τ is the restriction to G(0) if and only if it extends to G as a smooth function.
A general procedure for producing τ -spherical functions from an admissible representation of G will not

be needed, but we include one here for completeness. Let K̂ be the set of K-types of a representation π on
V , then partition a subset of K via S1 and S2, so that S1 t S2 ⊂ K̂. We know

π �K=
⊕
ω∈K̂

nωω,

and we can set
τi :=

⊕
ω∈Si

nωω

and τ := (τ1, τ2). Let Ui be the vector space for τi, and let Ei : V � Ui be the resulting projections. Then

F (x) = E1π(x)E2 : U2 → U1

so F is τ -spherical. In practice, we shall be interested, when we apply theorem 6 and section 2.6 to SL(2,R)
in section 3 , in the case where S1 and S2 are each a single K-type.
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2.1.1 τ-radial components

Our ultimate goal is to calculate the effect of elements of U(gC) on F for τ -spherical F . A computation shows
that if X is in the root space gα for some root α, then X is a difference of an element of k and an element of
Ad(a)k for a ∈ A+. The coefficients of the elements depend in general on a. The calculation works equally
well for θX, and hence it shows that

θn + n ⊂ k + Ad(a)k. (1)

We know already that
g = θn + a + m + n (2)

corresponding to
g = lower triangular + diagonal + upper triangular.

Together (1) and (2) prove

Proposition 1. For fixed a ∈ A+, we have

g = Ad(a−1)k + a + k,

whence by the Poincaré-Birkhoff-Witt theorem, monomials

(Ad(a−1)X)HY

are a basis for U(gC). Here H ∈ U(aC) and Y,X ∈ U(kC).

We start out towards our goal by calculating (Ad(a−1)X)HY F (a), and then show that derivatives of F
are as determined by A+ as F itself is. We have if X is a first-order differential operator

(Ad(a−1)X)HY F (a) =
d

dt
HY F (a exp(Ad(a−1)tX))

∣∣
t=0

=
d

dt
HY F (a exp(a−1tXa))

∣∣
t=0

=
d

dt
HY F (exp(tX)a)

∣∣
t=0

.

Now for general k-th order X ∈ U(kC), we can calculate

(Ad(a−1)X)HY F (a) =
dk

dtk
HY F (exp(tX)a)

∣∣
t=0

(3)

=
dk

dtk
dl

dtl1

dn

dtn2
F (exp(tX)a exp(t1H) exp(t2Y )

∣∣
t=t1=t2=0

(4)

= τ1(X)HF (a)τ2(Y ) (5)

by definition of all the representations involved. We can now extend by linearity and obtain an differential
operator Dτ (u) from an element u ∈ U(gC). Then

uF (a) = Dτ (F �A+)(a).

Definition 4. The operator Dτ (u) is the τ -radial component of u. It is a differential operator on A+ with
variable coefficients.

Each term in Dτ (u), as shown in (3), differentiates by H and multiplies on the left and right by τ1 and
τ2, respectively. In this way each term is in EndC(HomC(U2, U1)) for each a. Therefore as a function on A+,
each term is a map A+ → EndC(HomC(U2, U1)).

We have now accomplished the first step towards the ultimate goal for this section mentioned above. The
next step is to calculate how a first-order operator X in g acts on F (k1ak2). We have

XF (k1xk2) =
d

dt
F (k1xk2 exp tX) =

d

dt
F (k1x exp(tAd(k2)X)k2) = τ1(k1)F (x exp(Ad(k2)tX))τ2(k2). (6)
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The above therefore also holds for monomials, and so

uF (k1ak2) = τ(k1)(uF )(a)τ2(k2)

provided that, in light of (6), u is fixed by Ad(k). Thus in particular we have

Proposition 2. For u ∈ Z(gC) and F in C∞τ (G(0)), we have

uF (k1ak2) = τ1(k1)(uF )(a)τ2(k2).

Thus uF in is C∞τ (G(0)) too.

We have therefore achieved our ultimate goal for this section, and obtained the best news we could, in
light of the connection between Z(gC) and K-finite matrix coefficients. Namely, uF is τ -spherical and so
determined by its restriction to A+.

Although 2 shows this next remark to be inconsequential for SL(2,R), the fact that M centralizes A
implies that, for m ∈M ,

τ1(m)F (a) = F (a)τ2(m),

so actually F (a) ∈ HomM (U2, U1) ⊂ HomC(U2, U1).

2.1.2 τ-spherical functions made from matrix coefficients

In order to connect section 2.2 with this section for application in 2.4, we will need to associate matrix
coefficients to τ -spherical functions and vice-versa. We can think of a K-finite (in both places) matrix
coefficient as a function from G to (U1 ⊗ U∗2 )∗ for K-types U1 and U2. This is because the map G → C
sending g 7→ (π(g)u1, u2) is equivalent to a map G→ (U1 ⊗ U∗2 )∗ sending

g 7→ ((u, v) 7→ (π(g)u, v)). (7)

The standard fact that H ⊗R J∗ ' HomR(J,H) for general R-modules J and H, and finite-dimensionality of
U1 and U2 then say that (7) is equivalent to a map G→ HomC(U2, U1).

The same thing is said more carefully in [5], where it is also easier to see why one side of the equivalence
should actually be τ -spherical. There is an identification

HomK×K(U2 ⊗ U1, C
∞(G))←→ C∞τ (G)′

where C∞τ (G) ' C∞τ (G)′, where the right side has the target replaced with U∗1 ⊗ U∗2 by finite-dimensionality,
via

〈Fφ(g), u1 ⊗ u2〉 = φ(u1 ⊗ u2)(g) (8)

for Fφ ∈ C∞τ (G)′ and φ ∈ HomK×K(U2 ⊗ U1, C
∞(G)). Note that this construction, in whichever phrasing,

works for representations on Banach spaces equally well as for Hilbert spaces.

2.2 The fundamental matrix, the monodromy representation, and asymptotics

The perspective in this section is more explicit about the topological factors at play in determining the
eventual form of the fundamental matrix arrived at in theorem 6. Specifically, we will develop the language
to understand the statement that a monodromy-invariant map from a covering space is truly a map from the
topological space itself. This is the perspective that is developed in [1].

2.2.1 Deck transformations and monodromy

While [1] as well as [4] both eventually specialize to the complex unit disk, both also seem to find it instructive
to begin more generally. Let therefore X be a connected complex manifold based at x0, and X̃ be the
universal covering space, with covering map p : X̃ → X. The fundamental group π1(X,x0) of X acts on X̃
by permuting elements within a fibre according to the definition below.
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Definition 5. Let X be a topological space with fundamental group π1(X,x0) and X̃ be a covering space for
X. Let γ ∈ π1(X,x0), and let γ̃ be its unique lift (which exists) with starting point x̃ for any x̃ in the fibre
over x ∈ X. Define the deck-transformation Tγ : X̃ → X̃ by saying Tγ(x̃) is the terminal point of the loop γ̃.

Now in the notation of [1], let OX(W ) and OX̃(W ) be shaves of germs of holomorphic functions X, X̃ →W
for some finite-dimensional vector spaceW over C. The action by deck transformations induces a representation
of π1(X,x0) on the vector space of holomorphic functions f : X̃ →W , via

T ∗γ (f) := f ◦ Tγ .

Definition 6. T ∗γ is the monodromy transformation corresponding to γ.

Definition 7. Global sections of p−1O(W ), ie, holomorphic functions X̃ → W will be called multivalued
sections of OX(W ). See subsubsection 2.2.4.

This last definition begins to reconcile this abstract approach with that of [4], and we can now proceed to
introduce differential equations.

2.2.2 The fundamental matrix

Let X now be an open connected subset of Cn, E = EndC(W ), and F1, F2, . . . , Fn : X → E be holomorphic.
Consider the differential equation system

∂iΦ = FiΦ i ∈ {1, . . . , n}

on X. The Φ here are functions X →W (c.f. definition 3). A local solution on U ⊂ X determines a subsheaf
S of OX(W ), and global sections of p−1S are multiple-valued local solutions. Let Sx0

be the stalk of germs
of solutions at x0. Define a subspace

W0 := {ϕ(x0) |ϕ ∈ Sx0 is the germ of a local solution at x0}

of W . Linearity of the differential equations ensures that W0 is closed under addition.
The above language is to set up a lemma to prove the following important theorem.

Theorem 2. The map p−1SX̃(W )→W0 sending Φ 7→ Φ(x̃0) is a linear isomorphism. Hence, local solutions
of our system extend to global multi-valued solutions.

The first step in the (omitted) proof is the lemma below. It shows injectivity (via stalk-wise injectivity) for
the theorem. The second step involves lifting local solutions to the covering space {(x, ϕ) |ϕ ∈ Sx, x,∈ X}
of X.

Lemma 1. The map Sx0 →W0 sending ϕ 7→ ϕ(x0) is a linear isomorphism.

Now for the payoff:

Theorem 3. Let E0 = HomC(W0,W ). By theorem 2, there is a holomorphic map S : X̃ → E0 such that

1. S(x̃0) : W0 ↪→W ;

2. ∀w ∈W0, the map X̃ →W given by x 7→ S(x)w is a multiple-valued solution of the system.

The map S is referred to by [4] and [1] as the analogue of the fundamental matrix. We shall just call it
the fundamental matrix.

The global W -valued holomorphic solutions of the system in p−1S (X̃) form a vector space invariant
under monodromy transformations; such transformations just permute the multiple values, sending solutions
to solutions. Therefore for all γ ∈ π1(X,x0), or equivalently for all Tγ , T ∗γS(x̃)w is a new multiple-valued
solution for all w ∈W0. Now theorem 2 says that multiple-valued solutions are in bijection with elements of
W0, so there must be a unique (invertible) Mγ ∈ EndC(W0) such that

T ∗γS(x̃) = S(x̃) ◦Mγ .
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Proposition 3. The assignment γ 7→Mγ is a representation of π1(X,x0) on W0,

Proof. Clearly the identity acts as the identity endomorphism, as T ∗e = Id, so theorem 2 says Me = Id. We
recall first that the fundamental group acts on the covering space, so γ 7→ Tγ is a homomorphism. Then if
γ1, γ2 ∈ π1(X,x0), we have

S(x̃) ◦Mγ1γ2 = T ∗γ1γ2S(x̃) = S(Tγ−1
2 γ−1

1
(x̃)) = S(Tγ−1

2
Tγ−1

1
(x̃)) = S(Tγ−1

2
(x̃)) ◦Mγ1 = S(x̃) ◦Mγ1 ◦Mγ2 .

Definition 8. The representation above is the monodromy of the system.

2.2.3 Differential equations on the unit disk

The key reason to specialize to systems on a punctured disk is that the fundamental group will be abelian,
and hence operate by communiting endomorphisms on W0. This will allows for linear algebra games with
the matrix exponential to put the fundamental matrix into a form from which we can read off the structure
solutions. In particular, assuming the coordinates developed in section 2.3, one sees the structure of τ -spherical
functions built from whatever matrix coefficients one pleases.

We therefore set X = Dn ⊂ Cn,
X× = (D×)k ×Dn−k, (9)

where D× = D \ {0} ⊂ C and 1 ≤ k ≤ n. Put

Y = X \X× = {x |xi = 0 for some i ∈ {1, . . . , k}} . (10)

We want to study the system
∂iΦ = FiΦ

for Fi : X
× → E holomorphic. Let H = {x ∈ C | <(z) < 0} be the strict left half-plane in C. The map

p : (x1, x2, . . . , xk, xk+1, . . . , xn) 7→ (ex1 , ex2 , . . . , exk , xk+1, xk+2, . . . , xn)

is a covering map, and lets us identity the universal covering space X̃× with Hk ×Dn−k.
For future use, we point out that as a real subspace X× is semi-analytic, as defined in [3].
The fundamental group π1(X×, x0) ' Zk, with generators viewable as the loops around each puncture.

Call each generator (taken in the counter-clockwise direction) to be γi, and consider the deck transformations
Ti := Tγi . Now γi is a single loop around a puncture, so

Ti : (x1, x2, . . . , xi, xi+1, . . . , xn) 7→ (x1, . . . xi−1, xi + 2π, xi+1, . . . , xn).

We have mentioned already that γ 7→ Tγ is a homomorphism, but the above formula is further proof
that the Ti commute. It follows that if Mi := Mγi for the monodromy representation on W0, then the Mi

commute too. Linear algebra now says there is a commuting family {Rj} such that Mj = exp(−2πiRi).
(This lemma is proved for general families of commuting matrices in [4]. The idea is to use simultaneous
Jordan-Chévally decomposition and form matrix logarithms.) This all proves the following

Theorem 4. The map P : X̃× → HomC(W0,W ) given by

P : (x1, . . . , xn) 7→ S(x1, . . . , xn) exp(−(x1R1 + · · ·+ xkRk))

is invariant under all monodromy transformations T ∗γ . Hence it is a map X× → E0.

Corollary 1. The fundamental matrix S has the form

S(z) = P (z)zR,

where we write formally that

zR = (x1, . . . , xn)R := exp(z1R1 + · · ·+ zlRl).
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S is a function on X̃×, or Hk ×Dn−k, and we see that all the multi-valuedness of S comes from zR, or
ultimately, from monodromy.

Corollary 2. If we write zs(log z)q for s = (s1, . . . sl) and q = (q1, . . . ql) to be the function

(x1, . . . , xn) 7→ exp(s1x1 + · · ·+ slxl)(x
q1
1 · · · · · x

q1
l ),

the solutions with a fundamental matrix decomposed as in corollary 1 are of the form

Φ(z) =
∑
s∈F

∑
0≤|q|≤q0

zs(log z)qΦs,q(z)

for W -valued holomorphic functions Φs,q.

Proof. We give a sketch of the rearrangement. Given that the Ri commute, we have

zR = zR1
1 · · · · · zRll ,

and all we need to show is that

zR1
1 · · · · · zRll =

r∑
i=1

zsipi(log z)

where pi is function into EndC(W0) with polynomials in log z as its matrix coefficients.
By the Jordan-Chevally decomposition write simultaneously Ri = Di +Ni, and let Ij be the projections

onto the independent subspaces where all Di are scalar operators. Then we define the in general complex
number si as the number such that

DiIj = s
(j)
i Ij ,

and define si = (s
(1)
i , . . . , s

(l)
i ). Then one can calculate that

zD1
1 · · · · · zDll =

r∑
i=1

zsiIi.

For the nilpotent parts, by definition

z
Nj
j = exp(Nj log zj) =

n−1∑
k=0

(log zj)
kNk

j

and so the product of the zNii is a matrix with polynomial entries in log z.
For a comment on the connection between q0 and the size of the largest Jordan block in the fundamental

matrix see subsection 3.

There are several equivalent definitions of simple singularities depending on the available or desired
technology. It will be sufficient for now to understand simple singularities by saying that{

zi∂iΦ = FiΦ 1 ≤ i ≤ k
∂iΦ = FiΦ k < i ≤ n

(11)

has simple singularities along Y . The fundamental matrix will, upon comparing this system to the one at the
beginning of this subsection, have the form in corollary 2.
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2.2.4 Aside for my own benefit on some constructions on sheaves.

What [1] is really talking when they make the definition equivalent to definition 7 is the inverse image functor
from the the category of sheaves on X to the category of sheaves on X̃. In general, we have the following
definition.

Definition 9. Let f : X → Y be continuous, and let F be a sheaf on Y . The inverse image sheaf is the
sheaf obtained from the presheaf sending

U 7→ lim→V⊇f(U)F (V )

for open sets U of X. The direct limit is taken over all open V containing f(U), which is in general not open.
(Of course, we want to understand this for a covering map, which will locally be a homomorphism and hence,
open after restricting to some neighbourhood. The hard way has got to be more rewarding, though.) The
inverse image sheaf is written f−1F (in [1], f∗F ).

Example 1 (Cribbed from Wikipedia). If f is inclusion of a point y, then f−1F is just the stalk of F at y,
ie, the set of germs, the germs being exactly colimits over all the open sets containing y.

For the above definition to make sense, we need to actually understand how to make sheaves reliably from
presheaves.

Definition 10. Given a presheaf F , we define a sheaf F+ by

F+(U) :=

{
s : U →

⋃
P∈U

FP

}

such that for all P ∈ U , s(P ) ∈ FP , and for all P ∈ U , there is a small neighbourhood of P , V ⊂ U and
t ∈ F (V ) such that for all Q ∈ V , the germ tQ = s(Q). Further, there is a morphism of sheaves θ such that
for any other morphism F → G for a sheaf G , the map factor uniquely through F+.

We can check this construction actually gives a sheaf with the stated properties. It is clear that we get a
presheaf with restriction of sets as the restriction maps. Further, if s maps points to the zero germ on every
set of an open cover of an open set U , then s is the zero map; germs are local. For an open cover {Vi} of U ,
and {si} such that si �Vi∩Vj= sj �Vj∩Vi for all i, j, then this just says si(P ) = sj(P ) are the same germs for
P ∈ Vi ∩ Vj . We can therefore define

s : P 7→ si(P ) �∩Vj3PVj

and this is well-defined. That s(P ) ∈ FP for all P follows from the si doing this; and the second requirement
follows from each si being locally given by a section of F , and then restricting to the intersection ∩Vi3PVi.
For the map, we can set

θ : s 7→ (P 7→ sP ).

The rest of the universal property requires properties of maps of stalks.
All this is to allow us to comfortably say that the sheaf of germs OX̃(W ) = p−1OX(W ), as for U ⊂ X̃,

p−1OX(W )(U) =
lim→V⊇p(U) OX(W )(V ) = OX(W )(p(U)) = {s : p(U)→W}

because for small enough U , p is open. There’s a clear way to relate germs of functions on the left to germs of
functions on X̃, namely, composition with the local homomorphism p, so the sheaf associated to the presheaf
p−1OX(W ) is isomorphic to the sheaf associated to OX̃(W ) (as a presheaf), but then this is just isomorphic
to OX̃(W ).
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2.3 Coordinates on the group

We have now listed all the differential equations we shall require, at the level of detail we shall require, and
introduced τ -spherical functions. To connect them, we need coordinates on G, or at least on some subset
of A, putting is into the setting of subsection 2.2.3. [4] and [1] differ on which subset of A they chose, [4]
choosing A+, the exponentials of the positive Weyl chamber (identified via the Killing form) a+ and [1]
choosing A−. The primary difference in notation between [4] and [1] is a matter of deciding at what point to
take exponentials and where to put a minus sign:

2.3.1 The set-up in [4]:

Recall ∆ = {α1, . . . , αl} ⊂ Σ to be the simple restricted simple roots of g (i.e., that ∆ is a base for Σ). In
particular, each αi is in a∗. Let a+ be identified with the positive Weyl chamber, and let A+ = exp a+. Define
coordinates

ι : A→ (R+)l, ι(expH) = (e−α1(H), e−α2(H), . . . , e−αn(H)) (12)

for a = expH.

Example 2. In terms of of SL(2,R), a = diag(t, t−1) and

ι(a) = e−2 log t = t−2.

Example 3. For SL(3,R), a = diag(t1, t2, (t1t2)−1) and for the root α : diag(u1, u2,−u1 − u2) 7→ u1 − u2,
we get

e−α log a = e−(log t1−log t2) = t2/t1.

Then ι : A+ ∼→ (0, 1)l, as by definition, αi will take positive values on the positive Weyl chamber.

2.3.2 The set-up in [1]:

Fix a set ∆ of “simple restricted roots,” now meaning multiplicative characters A→ R×>0 and use them to
embed A ↪→ C#∆ = Cl. Now recall the meaning of the number 1 ≤ k ≤ n defined in (9). [4] makes silently
the choice k = n, but [1] keeps this generality, defining a larger set of characters thus:

Definition 11. Let Λ be the set of multiplicative characters ᾱ : A→ R×>0 such that

1. The base ∆ ⊂ Λ;

2. The characters in Λ \∆ are trivial (≡ 1) on A ∩ [G,G].

Note that for G = SL(n,R) and G = SL(n,C), G = [G,G]. This requirement seems to say that Λ
contains no exponentials of restricted roots of g not in ∆.

3. The differentials of the characters λ for a basis for a∗.

Remark 1. Stipulation 2 above deals with the centre of groups more general than the LCR groups we
consider. It is relevant for disconnected groups like GL(n,R). In this case it guarantees stipulation 3, as the
Lie algebra is sensitive only to the connected component of the group containing the identity.

Example 4. [1] gives examples of “roots” for G = SL(3,R), putting for the actual root α of g given by

α :

t1 t2
(−t1 − t2)

 7→ t1 − t2, (13)

the multiplicative character in Λ

ᾱ :

et1 et2

e−t1−t2

 7→ et1/et2 . (14)

11



We can expand upon this to illustrate requirement 3 above. Viewing a∗ as the space of 1× 2 rows, we have
α = (1,−1). Then the differential of ᾱ at the identity is(

∂ᾱ

∂t1
,
∂ᾱ

∂t2

) ∣∣
t1=t2=0

=
(
et1/et2 ,−et1/et2

) ∣∣
t1=t2=0

= (1,−1).

There is then an embedding ῑ : A→ C#Λ by a 7→ (λ1(a), λ2(a), . . . ).
The key point is that if restrict ourselves to the negative Weyl chamber a− and its exponential A−, and

set k = n, then
ῑ(A−) = (0, 1)l

too.
In neither case has the punctured disk D× yet been brought into play, which we know to be roughly half

of the loose characterization we gave in (11). In both sources a fair amount of technicality is involved in
doing this, and we will summarize it quickly in the section below.

2.4 Constructibility of coefficients

2.4.1 τ-spherical functions and differential equations

We are now nearly read to invoke the results of corollary 2 and obtain asymptotics of τ -spherical functions.

Theorem 5. The following statements about differential operators in coordinates on A hold:

1. Let Hi be a dual basis for a, so normalized such that αi(Hj) = δij . Then under (either of) the coordinate
system(s) developed in the last section, Hi as a differential operator on A corresponds to −zj ∂

∂zj
, where

zj is the coordinate in Cl corresponding to (the exponentiated root or multiplicative character) αj.

2. For Z ∈ Z(gC), the τ -radial component Dτ (Z) corresponds to a element in the algebra of differential
operators on Dl

D∗ =

 ∑
k∈(Z+)l finite

Ak(z∂)k

∣∣∣∣∣∣Ak : Dl → EndC HomC(U2, U1) holomorphic

 .

3. The operator Dτ (Z)−Dτ (µΣ+(Z)) corresponds to an operator d ∈ D∗ with coefficients Ak vanishing at
0. Here

µΣ+ : Z(gC)→ U(kC)

is the projection made possible by the decomposition

g = θn⊕ k⊕ n.

4. The system on Dl, {Dτ (Z)(F �A+) = 0 |Z ∈ I}, for some ideal of finite codimension I ⊂ Z(gC) has a
simple singularity along Dl − (D×)l. (c.f. the prototypical system (11).)

Proof. We sketch the proof. The proof of (1) is a calculation directly from the definitions. (2) follows somewhat
intuitivly from (1) but the proof is more involved and uses the twisted version µΣ+ of the Harish-Chandra
homomorphism. For (3) one needs to show that the ideal I = 〈Dτ (Z), Z ∈ I〉 has finite codimension. One
essentially uses that for U(hC), the isomorphic image of the Harish-Chandra homomorphism, the Weyl-fixed
elements U(hC)W , are a U(hC)-module of finite rank.

While this theorem is amalgamated from the development as in [4], [1] proceeds practically identically. In
fact, their paper served as a basis for [4].

We can now invoke all the results of section 2.2, namely corollary 2:
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Theorem 6. Let π be an admissible representation of G on V , and let v, v′ be K-finite vectors. We can
assume each lies in a single K-type τ1 or τ2 operating on subspaces U1 and U2 of V , and form projections
Ei : V → Ui. Then

F (x) = E1π(x)E2 : G→ HomC(U2, U1)

is τ = (τ1, τ2)-spherical, and by theorem 5 and corollary 2,

(F �A+ ◦ι−1)(z) =
∑
s∈F

∑
0≤|q|≤q0

zs(log z)qFs,q(z).

Here F ⊂ Cl is finite, Fs,q : Dl → HomC(U2, U1) are holomorphic on all of Dl, and q0 ∈ Z.

Reading the multi-index notation, then, we see that the real and complex parts of an entry of the matrix
(F ◦ ι−1)(z) are each in the R-algebra generated by real-analytic functions on Dl, the real natural logarithm
log : (0,∞)→ R, and the real part of wu for complex number w and u.

2.5 Constructible functions

Here we summarize the definitions we require from the frameworks of [3] and then [2]. The definitions are
developed for in general for the category of analytic real manifolds, but we shall need only the trivial cases
Cn and G.

Definition 12. A subset S of a (Haussdorf, analytic) manifold M is semi-analytic at x ∈M if there is an
open neighbourhood U of x such that

U ∩ S =
⋃

finite

{y ∈M | f(y) = 0, g1(y) > 0, . . . , gn(y) > 0}

where f, g1, . . . , gn are all analytic functions on U . S is semi-analytic if it is semi-analytic everywhere on M .

Definition 13. S ⊂M is sub-analytic at x ∈M if S is locally a projection of a pre-compact semi-analytic
set. Precisely, if there exists a neighbourhood U of x in M such that

U ∩ S = U ∩ π(S′),

where S′ ⊂M × RN is pre-compact and semi-analytic. S is sub-anlalytic if it is sub-analytic everywhere on
M .

In particular, one sees that semi-analytic sets are sub-analytic.

Definition 14. A function f : Rn → R is sub-analytic if it is definable by analytic functions restricted to
compact cubes within their domains of analyticity, polynomial on all of Rn, and quotients and compositions
of them. The definitions may also include =, <, and Boolean operators.

Definition 15. The above definitions are all from [3]. This last and most directly applicable one is from [2].
A function on a sub-analytic domain U ⊂ Rn is constructible if it is an element of the R-algebra generated by
sub-analytic functions U → R and functions log f(x), where f : U → (0,∞) is sub-analytic.

The primary results we sought to apply are as follows. The first requires some particular coordinates to
introduced in order to have a precise statement, so we give a rougher summary.

Theorem 7 (Theorem 2.9, [2], Preparation of constructible functions). If f : X × Rn → R is constructible
and X is a sub-analytic set, with f(x, ·) Lebesgue-integrable on Rn for all x ∈ X, then there exists a partition
of Rn and certain coordinates such that on each cell of the partition, f is a finite sum of functions of the form

g(x)|ỹ|α(log |ỹ|)βuj(x, y)

where ỹ is y in the coordinates mentioned above, α is a multi-index of rational numbers, β is a multi-index of
natural numbers, and uj is rational. Further, the expressions above have constant sign on their respective
cells of the partition.
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Theorem 8 (Theorem 2.5, [2], Stability under integration). If f : X × Rn → R is constructible and X is a
sub-analytic set, with f(x, ·) Lebesgue-integrable on Rn for all x ∈ X, then F : X → R with

F (x) =

∫
Rn

f(x, y)dy

is constructible.

It is this theorem that we hope to employ to show certain orbital integrals are constructible, and hoped to
use to show that matrix coefficients were constructible, as many representations are realizable with integration
over Rn as the inner product. For an example of such a representation, and the obstruction we encountered,
see section 3.

2.6 Extent of Constructibility

The functions in theorem 6 are not constructible in the sense of [2]. Specifically, neither the real and complex
parts of complex exponentiation are constructible. Indeed, one has

<wy+xi = <ey log zeix log z,

and this last term has real part cos(x log z). We cannot view log z as a restriction of log to a closed interval not
including 0 without losing asymptotic significance, and so we cannot then compose cos with log. Additionally,
we could not define cos as any restriction to a compact interval of the usual analytic function cos : R→ R. In
supposed analogy with the case for p-adic groups, the next best thing is true, though.

Theorem 9. For F as in 6 and let 1 > ε > 0. Then on
{
z ∈ Cl

∣∣ |z| ≤ 1− ε
}

,

(F �A+
ε
◦ι−1)(z)

is a linear combination of functions zs with constructible coefficients
{
z ∈ Cl

∣∣ |z| ≤ 1− ε
}
→ R, after taking

real of complex parts. Here

A+
ε =

{
expH ∈ a

∣∣∣∣αi(a) ≥ log
1

ε
∀i ∈ {1, . . . , l}

}
⊂ A.

Proof. The set A+
ε is in fact semi-analytic for any 1 > ε > 0, as

A+
ε =

{
a ∈ A

∣∣∣∣αi(log a) ≥ log
1

ε
∀i ∈ {1, . . . , l}

}
(15)

=

{
a ∈ A

∣∣∣∣αi(log a) > log
1

ε
∀i ∈ {1, . . . , l}

}
∪

l⋃
j=1

{
a ∈ A

∣∣∣∣αi(log a) = log
1

ε
∀i ≤ j, αi(log a) > log

1

ε
∀i > j

}
.

(16)

Each set in the union is semi-analytic, as αi is linear and log is analytic, so the union is semi-analytic. Now
set

Cs,q(z) = (log z)qF s,q(z).

This function is constructible, as F s,q, defined by Fs,q restricted to the l-fold product of closed radius
(1− ε)-disks is restricted analytic, and log is constructible by definition. Then

(F �A+
ε
◦ι−1)(z) =

∑
s∈F

∑
0≤|q≤q0

zsCs,q(z)

has constructible coefficients.
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We would also now like to obtain a formula for converting theorem 6 into a theorem about matrix
coefficients. Defining F (x) as in the statement of that theorem, we note that the matrix coefficient

(π(g)v′, v) = (F (x)v′, v).

We can apply theorem 6 term-by-term and obtain for x ∈ A+,

(F (x)v′, v) =

∑
s∈F

∑
0≤|q|≤q0

ι(x)s(log ι(x))qFs,q(ι(x))v′, v

 =
∑
s∈F

∑
0≤|q|≤q0

ι(x)s(log ι(x))q (Fs,q(ι(x))v′, v) .

(17)

Remark 2. There are examples where ι is a constructible function, at least on A−. For example, when
G = SL(2,R), ι : diag(t, t−1) 7→ t2. Whether the inner product should be constructible is more delicate. In
fact, the next extended example will show there are situations even for SL(2,R) where v′ and v need not be
constructible functions, so any constructibility of integrals involving them would be far from an automatic
consequence of theorem 8.

2.6.1 Example of a principal series representation with non-constructible K-finite vectors

The first thing we do is realise the unitary irreducible representation P±,iv, whose vector space we view as
“truly” being L2(R), in another way.

Proposition 4 ([4],Exercise 10, §8, II.). Let v ∈ R. Let P+,iv be the representation of SL(2,R) with Hilbert
space

H+
v =

{
f : R2 → C

∣∣F (tx, ty) = |t|−1−ivF (x, y), ‖F‖v <∞
}
,

norm

‖F‖2v =
1

2π

∫ 2π

0

|F (cos θ, sin θ)|2 dθ,

and action

P+,iv(g)F (x, y) = P+,iv(g)F

((
x
y

))
= F

(
g−1

(
x
y

))
.

Then P+,iv is unitarily (up to a constant) equivalent with P+,iv.

Proof. Define L : H+
v → L2(R) by F (x, y) 7→ F (1, y) := f(y). It is obvious that L is linear, but there are

several things to check.

1. L is actually into L2(R): Let F ∈ H+
v and then we can estimate ‖LF‖22 by

‖LF‖22 =

∫
R
|F (1, x)|2 dx

=

∫ π
2

−π2
|F (1, tan θ)|2 1

cos2 θ
dθ

=

∫ π
2

−π2

∣∣∣∣∣
∣∣∣∣ 1

cos θ

∣∣∣∣−1−iv
∣∣∣∣∣
2

F (1, tan θ) dθ

=

∫ π
2

−π2
F (cos θ, sin θ) dθ (18)

≤ ‖F‖2v <∞.

2. L is injective: If LF is the zero function, then F (1, y) = 0 for all y, so for all x 6= 0 we have
F (x, y) = |x|−1−ivF (1, y/x) = 0 and F is the zero function at least everywhere except the y-axis. This
is a set of measure zero, so F is the zero function.
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3. L is an intertwining operator: Let g =

(
a b
c d

)
so that g−1 =

(
d −b
−c a

)
. We calculate that

L(P+,iv(g)F )(y) = L

(
F

(
g−1

(
x
y

)))
= L

(
F

((
d −b
−c a

)(
x
y

)))
= L (F (dx− by,−cs+ ay)) = F (d− by,−c+ ay). (19)

On the other hand,

P+,iv(g)(LF )(y) = P+,iv(g)f(y) = | − by + d|−1−ivf

(
ay − c
−by + d

)
= | − by + d|−1−ivF

(
1,

ay − c
−by + d

)
= F (−by + d, ay − c). (20)

4. L is surjective: We note that H+
v is non-empty because it contains F ≡ 1, as

‖F‖2v =
1

2π

∫ 2π

0

1 dθ = 1 <∞.

Surjectivity now follows from the fact that L is an injective intertwining operator into an irreducible
representation.

5. L is bounded: This will follow from L being unitary up to a constant factor, hence an isometry up to a
constant factor.

6. L is unitary up to a constant factor: From the definition,

(LF,LG)2 =

∫
R
F (1, x)G(1, x) dx

=

∫ π
2

−π2
F (1, tan θ)G(1, tan θ)

1

cos2 θ
dθ

=

∫ π
2

−π2

∣∣∣∣ 1

cos θ

∣∣∣∣F (1, tan θ)

∣∣∣∣ 1

cos θ

∣∣∣∣G(1, tan θ) dθ

=

∫ π
2

−π2
| cos θ|−1−iv|| cos θ|ivF (1, tan θ)| cos θ|−1+iv|cosθ|−ivG(1, tan θ) dθ

=

∫ π
2

−π2
F (cos θ, sin θ)G(cos θ, sin θ)| cos θ|−iv| cos θ|iv dθ

=
1

2

∫ 2π

0

F (cos θ, sin θ)G(cos θ, sin θ) dθ

= π(F,G)v. (21)

We now attempt to define the correct eigenfunctions of K for P+,iv. Let

εnv (x, y) = εnv (t cosϑ, t sinϑ) := einϑ|t|−1−iv. (22)

Proposition 5. Let εnv be as above. Then

(a) εnv is in H+
v . Moreover, ‖εnv‖v = 1;
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(b) If m 6= n, then (εmv , ε
n
v )v = 0;

(c) εnv is an eigenfunction of K.

Proof. (a) follows directly from the calculation

‖εnv‖2v =
1

1π

∫ 2π

0

|εnv (cosϑ, sinϑ)|2 dϑ =
1

π

∫ 2π

0

∣∣einϑ∣∣2 dϑ =
1

2π

∫ 2π

0

dϑ = 1.

Likewise we have (b), as

(εnv , ε
m
v )v =

1

2π

∫ 2π

0

εnv (cosϑ, sinϑ)εmv (cosϑ, sinϑ) dϑ =
1

π

∫ 2π

0

ei(n−m)ϑ dϑ = 0

if m 6= n. Finally, if k in K is rotation by ξ, then

P+,iv(k)εnv (x, y) = P+,iv(k)εnv (t cosϑ, t sinϑ)

= εnv

(
k−1

(
t cosϑ
t sinϑ

))
= εnv (t cos(ϑ− ξ), t sin(ϑ− ξ))
= ein(ϑ−ξ)|t|−1−iv

= e−inξεnv (x, y).

These specific calculations are actually viewable as a corollary of the following equally trivial observation.

Proposition 6. Each εnv , restricted to the circle in R2, is a character of the circle group, viewed as lying in
R2. They are therefore eigenfunctions of the left regular representation of the circle.

Proof.
εnv (cos(ϑ+ ξ), sin(ϑ+ ξ)) = ein(ϑ+ξ) = einϑeinξ = εnv (cosϑ, sinϑ) · εnv (cos ξ, sin ξ).

Proposition 5 now follows from elementary Fourier analysis.

Corollary 3. The functions in (22) are the only eigenfunctions of K.

Proof. Functions in H+
v are determined by their restrictions to the circle, and these restrictions need to be

characters of the circle group.

Lemma 2. Restricted to the unit circle in R2, the real and imaginary parts of each εnv are constructible
functions. In fact, each is a sub-analytic function.

Proof. Trivial, as
εnv (cosϑ, sinϑ) = einϑ = cos(nϑ) + i sin(nϑ)

is holomorphic, so its real and imaginary parts are each real-analytic, and viewable as restricted to [0, 2π/n].

Remark 3. Warning! The lemma above holds only for H+
v as a vector space! As a representation, we

cannot view angles as restricted to [0, 2π/n], as K must be able to act by rotations. We cannot fix this by
precomposing with a quotient map either, as such a function has a saw-tooth-shaped graph made of countably,
but not finitely many linear segments and is therefore not subanalytic.
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We now calculate the value of εnv (t cosϑ, t sinϑ) for t other than 1. This will allow us to analyse
(P+,iv(a)εnv �S1)(x, y) away from the unit circle. In particular, we will know what acting by a ∈ A+ does, as
A+ does not send the circle to itself. We have

εnv (t cosϑ, t sinϑ) = |t|−1−iveinϑ (23)

= |t|−1|t|−iv(cosnϑ+ i sinϑ) (24)

= t−1(cos(−v log t) + i sin(−v log t))(cos(nϑ) + i sin(nϑ)) (25)

= t−1(cos(v log t) cos(nϑ) + i sin(nϑ) cos(−v log t) (26)

+ i sin(−v log t) cos(nϑ)− sin(−v log t) sin(nϑ)) (27)

(28)

which has real part

<(εnv (t cosϑ, t sinϑ)) = t−1(cos(v log t) cos(nϑ)− sin(v log t) sin(nϑ)). (29)

Now let a =

(
t 0
0 t−1

)
∈ A+, and consider

P+,iv(a)εnv (sin θ, cos θ) = εnv (t−1 cosϑ, t sinϑ).

Calculation shows that

(
t−1 cosϑ
t sinϑ

)
=

(
L cos ξ
L sin ξ

)
has length

L =

√
t−2 cos2(nϑ) + t2 sin2(nϑ)

and angle
ξ = arctan(t2 tanϑ).

Then (29) becomes

f(t, ϑ) = L−1 cos
(v

2
log(t−22 cos2(nϑ) + t2 sin2(nϑ))

)
cos(nξ)+sin

(v
2

log(t−2 cos2(nϑ) + t2 sin2(nϑ))
)

sin(nξ)

is a map A+ × S1 → R. This is not a constructible function of ϑ, as we cannot view ϑ as restricted to
any compact interval if we wish H+

v to be a representation, and then we cannot view cos, sin and tan as
restricted-analytic. (More explicitly, sine is not a globally subanalytic function.) This shows that P+,iv(a)εnv
is generally not constructible.

2.6.2 Loss of density

The subset G(0) = KA+K (or equally well for these purposes, KA−K) is open and dense in G. G(ε) := KA+
ε K

is neither open nor dense, but for small enough ε includes all of G except a small neighbourhood of the
identity.

3 Example for SL(2,R)
We can now fix the notation from 2. The case for SL(2,R) will simplify greatly, as there will be only one
positive root α to consider, and so ∆ = Σ+, and l = 1. Further, as K is the circle group and in particular
abelian, K-types will be one-dimensional and so the associated τ -spherical functions will take values in C.
The theory developed in section 2.2 will also simplify greatly, as Z(sl(2,R)C) = C[Ω] is generated by the
Casimir element, which is strongly analagous to Laplacian operators. The numbers si will also have an easy
interpretation as roots of an indicial equation associated to series solutions for differential equations.
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3.1 Coordinates on SL(2,R)

[4] puts coordinates on A+, but we can put coordinates on A− setting for a =

(
t 0
0 t−1

)
∈ A−

ι(a) = ι(expH) = eα(H) = exp(α

(
log t 0

0 − log t

)
= exp(−2 log t) = t2,

as there is only one positive simple root α. These ι coordinates, the coordinates or [1] are both constructible,
ι being a polynomial functions, on the semi-analytic domain A−; as membership in A− is determined by
polynomial conditions and a polynomial inequality. The advantage of the ι coordinates is that they send
A−, viewed as exp(−∞, 0) = (0, 1), to itself by a polynomial, whereas coordinates on A+ would need to map
t 7→ t−2 in order to have precompact image.

3.2 Asymptotics of τ-spherical function for SL(2,R)
3.2.1 Computing q0

The integer q0 = l(n − 1) bounds the maximum exponent of a logarithmic term in a solution function.
Therefore q0 is bounded above by one less than the maximum size of Jordan block in the fundamental matrix
for the system described in §7. As Z(sl(2,R)C) ' C[Ω] and the Casimir element Ω acts as the Laplacian, we
have that q0 = 1. A weaker bound, that q0 ≤ 2, the order of the Weyl group, is also noted in §7.

3.2.2 Bounding F

That Z(sl(2,R)C) ' C[Ω] shows also that we have a secon-degree differential equation in one variable. In
Appendix B we have that n is the degree of the equation, so the fundamental matrix is a map

Φ(z) =

(
ϕ1(z) ϕ2(z)
ϕ′1(z) ϕ′2(z)

)
: V ⊂ C2 → C2.

where {ϕ1, ϕ2} is a basis for the space of solutions.
This corresponds to the fundamental matrix described in section 2.2 actually being a matrix. The equation,

obtained after lengthy changes of coordinates carried out in [4], is

1

2
Dτ (Ω) =

d2F

dt2
+(coth t)

dF

dt
+

1

sinh2 t
(F (at)τ2(Y )2+τ1(Y )F (at))−

2 cosh t

sinh2 t
τ1(Y )F (at)τ2(Y ) = cF (at) (30)

where

at =

(
et/2

e−t/2

)
= cF (at)

and

Y =
1

2
(e− f).

Here we are working with the standard basis of sl(2,R):

h =

(
1 0
0 −1

)
e =

(
0 1
0 0

)
f =

(
0 0
1 0

)
. (31)

One then gets, by the remarks at the beginning of this section and the theory developed above, that in the
coordinates ι,

F ◦ ι−1(z) = zs1F1,0(z) + zs2 log(z)F2,1(z).

Here the si have an interpretation as roots of the indicial equation

s2 − s = c.
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Remark 4. These roots are generally complex, especially in cases such as admissible (in this case, unitary
as representations of G) principal series representations.

Here the indicial equation is

w2 − w =
−v2 − 1

4
,

where v is the real parameter appearing in P±,iv. The indicial equation has discriminant

1− 4

(
v2

4
+

1

4

)
= −v2 ≤ 0

and roots
1

2
± iv

2

and so the indicial equation does not have real roots unless v = 0. The representation P+,0 is irreducible,
and hence admissible, but P−,0.

Remark 5. The remark above gives an example of an admissible representation which does have constructible
τ -spherical functions, P+,0, provided that z 7→

√
z is constructible for real z.

Remark 6. The expansion (17) is imprecise in the sense that while the degree of the log terms appearing is
bounded as described there, by l(n− 1), (also by the order of the Weyl group), log need not appear. Indeed,
the equation above for SL(2,R) does not contain logarithmic terms unless s1−s2 is an integer. This difference
by an integer in the semi-simple parts of a family of commuting matrices corresponds, after multiplying
by −2πi and exponentiating, repeated eigenvalues of the monodromy representation matrix M . Thus the
monodromy action is not semi-simple in this case.
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