NSERC USRA Report - 2010 Summer Multiplication In Hecke Algebras

Owen Ren Mathematics Department Math Annex

hopeface@interchange.ubc.ca

November 3, 2010

This summer I worked under the direction of Dr. Masoud Kamgarpour. For most of the summer I spent time learning the following topics: linear algebra, p-adic number theory, Galois theory, and commutative algebra.

For the first three weeks I worked on a list of 30 problems in abstract linear algebra [3]. Over this period of time I managed to solve 13 of the 30 problems from the list. In the process of solving the problems I have learned some representation theory, commutative algebra and linear algebra. This is a sample problem that took me days to solve: Describe all the conjugacy classes of $GL_n(\mathbb{F}_q)$. There are four cases to consider and each depends on the eigenvalues of the matrix. The result is summarized in Table 1.

Class Type (Eigenvalue Type)	Number of Conjugacy Class	Number of Elements from each Class
$ 1.) \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} $	q-1	1
$ 2.) \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} $	$\frac{(q-1)(q-2)}{2}$	q(q+1)
$3.)\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$	q-1	(q+1)(q-1)
4.) Quadratic extension case	$\frac{q(q-1)}{2}$	q(q-1)

Table 1: Classification of the Conjugacy classes of $GL_n(\mathbb{F}_q)$.

For the class of type 4 on the table, the eigenvalues of the matrix lies strictly in the quadratic extension \mathbb{F}_q^2 of \mathbb{F}_q . Let $A_1, A_2, ..., A_n$ be representatives of distinct conjugacy classes. We know by the table that exactly q-1 of the A_i 's belongs to the Class of type 1, $\frac{(q-1)(q-2)}{2}$ belong to the class of type 2, and vice versa. Hence, by the table $n=q^2-1$ is the total number of classes. If we let $C_{GL_n(\mathbb{F}_q)}(A_i)$ be the conjugacy class containing A_i then by the class formula we have that

$$\sum_{k=1}^{n} |G: C_{GL_n(\mathbb{F}_q)}(A_i)| = (q-1) + \frac{(q-2)(q-1)q(q+1)}{2} + (q-1)^2(q+1) + q(q-1) = (q^2-q)(q^2-1)$$

which is the number of elements in $GL_n(\mathbb{F}_q)$.

I then spent another three weeks learning about p-adic numbers. The main topics that I studied were completions of fields and algebraic closures. This included the construction of \mathbb{Q}_p from \mathbb{Q} , the algebraic closure $\overline{\mathbb{Q}_p}$ of \mathbb{Q}_p , and the completion Ω_p of $\overline{\mathbb{Q}_p}$. The field $\overline{\mathbb{Q}_p}$ itself is not complete because there exist a Cauchy Sequence that does not converge in $\overline{\mathbb{Q}_p}$. For example, $a_i = \sum_{k=0}^i b_k p^{n_k}$ where $b_i's$ are primitive $(p^{2^i} - 1)$ th roots of 1 in $\overline{\mathbb{Q}_p}$ and n_i is an increasing sequence of integers dependent on a_i [2(Ch 3. Thm 12)]. The field Ω_p turns out to be algebraically closed and the proof can be found in [2 (Ch 3 Thm 13)].

Following that I studied Galois theory. I learned why there is no general solution in radicals to a polynomial equation of degree 5 or higher with coefficients in \mathbb{C} . The general polynomial of degree n means the polynomial

$$(x-x_1)(x-x_2)\cdots(x-x_n)$$

with roots x_1, x_2, \dots, x_n that are indeterminates. By definition, an algebraic element α over a field F can be solved by radicals if α is an element of a field K obtained by a chain of simple radical extensions

$$F = K_0 \subset K_1 \subset \cdots \subset K_t = K$$

where $K_{i+1} = K_i(\sqrt[n_i]{a_i})$ for some $a_i \in K_i$, $i = 0, 1 \cdots t - 1$ [1 (Sec 14.7)]. From the following theorem,

Theorem 1 The polynomial $f(x) \in F[x]$ where F is a field of characteristic 0 can be solved by radicals if and only if its Galois group is solvable [1 (Sec 14.7)].

and the fact that the Galois group of the general polynomial of degree n is isomorphic to S_n we can conclude that no general solution in radicals for a polynomial equation of degree 5 or higher exists because S_n is not a solvable group for $n \ge 5$.

For the remainder of the summer I studied commutative algebra and algebraic geometry. I focused on studying localization. The localization of a ring R with respect to a multiplicatively closed subset S of R is denoted $S^{-1}R$ and is exact. For instance, if $0 \to L \to M \to N \to 0$ is an exact sequence of R-modules, then the induced sequence $0 \to S^{-1}L \to S^{-1}M \to S^{-1}N \to 0$ of $S^{-1}R$ -modules is exact [4 (Ch 3 Sec 1 & 8)].

Overall, my summer has been a great learning experience. My mentor and I have decided to continue working together in the near year.

References

- [1] Dummit S. David., Abstract Algebra. 3rd Edition. John Wiley and Sons, Inc, 2004.
- [2] Koblitz Neal., *p-adic Numbers, p-adic Analysis, and Zeta-Functions*. 2nd Edition. Springer-Verlag New York Inc. 1948.
- [3] Problems in Linear Algebra and Representation Theory. URL: http://www.masoudkamgapour.com/algebraproblems.pdf.
- [4] Serge Lang., Algebra. 3rd Edition. Springer Science+Business Media LLC, 2002.