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During my discussions with Prof.Rolfsen we studied mostly on algebraic
properties of groups!. We encountered many interesting groups. To
name a few, Artin and Coxeter groups, Thompson group, group of ori-
entation preserving homeomorphisms of the real line or [0, 1], group of
germs of orientation preserving homeomorphisms of real line fixing one
specific point.

Let G be a weighted graph ( to every edge of a graph there is an associ-
ated number, m(e, ) that can bein {2,3,4,...,00})

Artin(G)=(ve Vs :vwv...=wvw...Vo,w e V)
Coxeter(G)={(ve Vg :vwv...=wvw..Vv,w e V,v>=1Vve )
In the above presentations vwv...= wvw ... means that on eachside of

the equality we have m(e,,, ) letters.
homeo, (R)

homeo, ([0,1])
germ,(homeo, ([0, 1]))

My first task started with reading and checking the computations in
Prof.Rolfsen’s paper on local indicability of Artin groups. As a sub-task
I was assigned to learn about Schreier?-Reidemeister subgroup presen-
tation method. and Also see whether or not the fact about Artin group
B; which was forwarded to me originally from Ivan Morin was correct or
not [ Is the braid on top of this page the trivial braid ? ] . During these ac-
tivities I started writing a graphic program which would produce a braid
diagram from an encoded word element of the braid group

o0
oo T—

braid=1[1,1,1,1,1,-2,3,3]

Meanwhile I was assigned to check whether or not F, = (a,b,c,d :
aba = bab,bcbc = cbcbh,dcd = cdc,ac = ca,ad = da,bd = db)
one of the exceptional Artin groups is locally indicable or not [ which
a positive answer to it would imply that this group is right-orderable ].
My first attempt to solve this problem failed due a very naive mistake [
which I tried to use the fact that link groups are locally indicable , I was
looking for a link with its fundamental group F; , if such a link exists it’s
simple to show that it should have exactly 2 components. ]

simple question. If all the relations of the group are commutator rela-
tions, is it true that the group is locally indicable ? How about if we as-
sume that it doesn’t have torsion element ? or under any other simple
restriction .

As I was busy thinking about the F, problem, I found out pure Artin
groups [ colored Artin groups ] have very nice properties . All the nice
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Lorderability, local indicability , etc

20tto Schreier was born in Vienna at 1901. His contemporaries were Hans
Han, Kurt Reidemeister, Karl Menger, Wilhelm Wirtinger, Uryson, Alexandrov,
Emil Artin ,etc. He was a talented mathematician contributed mostly to group
theory and topology. Unfortunately, He died at a very young age of 28 in 1929. I
don’t have information on his cause of death.

properties came from Artin’s genius approach to organize group ele-
ments into some special intuitive form, known as Artin's combing. Now
the general property is if you remove bunch of hyperplane in R?>* and
compute the first homotopy group of this space, it can be shown that it
decomposes into semi-direct product of bunch of free groups .

fact. F X E X ... X F, is locally indicable [ where F;’s are free groups | .
Moreover if the semi-direct products acts nicely you can prove that the
resulting group is bi-orderable.

Related to these game-theory-like playing in high dimensions are 2 in-
tuitive papers Configuration Spaces[10] and Braid Groups[1] .

Next topic which we worked on was about space of ordering of a group.
There are good papers of Sikora[2] , Navas[5] and Tatarin[32]. We found
many bi-orderings of Thompson group [ the one defined as homeomor-
phisms of [0, 1] with breaking points on dyadically rational points and
with slope in powers of 2] .

Them  we showed that  homeo,([0,1]) embeds into
germ,(homeo,([0,1])) preserving some specific ordering of them
and also as a group injection.

One other thing we did was reading an article about twisted Alexander
polynomial which contained the following unclear lemma [ in a manner
that they are some operations not fully explained ] :

[Shapiro’s Lemma] If M is a m-module and x C 7, then H.(X,, M) =
H.(X,M Qg R[r/x]), where X, is the cover of X associated to the sub-
group k and M ®g R[n/x] is a m-module via the diagonal action.

and here is the exact concise [ more algebraic ] form of the above
lemma3

[ Second Shapiro Lemma ]. If H < G and M is an H-module, then

H.(H, M)~ H{(G,Ind$ M)
H*(H,M)= H'(G,Coind!, M)

Also, if you ever happened to check whether a group is locally indicable
or not, it is enough to check this for only all the groups generated by
finite number of generators and relations of your main group. [ If you
think finitely presentable groups are much easier to handle . |

List of Problems

1. Does there exists a finitely generated ordered group with an iso-
lated ordering such that the semi-group of positive elements of
that ordering is not finitely generated semi-group ?

a
(x,y:xiyx~i=yr' VieZ)

2. Right now no further problem comes to my mind or can be found
in my notes but there are tons of interesting problems lurking here
and there for .... .

3this lemma has never been published by Arnold Shapiro but was widely
known to some group of people. Shapiro is among the mathematicians who died
young, at the age of 41.
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