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1. Introduction

1.1. Self Avoiding Walks. The majority of this paper deals with self-avoiding
walks (SAWs). The N step SAW ω beginning at point x on the lattice Zd–the d di-
mensional hypercubic lattice–can be defined as a sequence of sites (ω(0), ω(1), ..., ω(N))
with ω(0) = x satisfying |ω(i+ 1)− ω(i)| = 1 and ω(i) 6= ω(j) for i 6= j[2]. The
length of ω is denoted as |ω| = N.

Denote the number of SAWs of length N beginning at the origin by cN . There
is a lot of empirical evidence to suggest that

(1.1) cN ∼ AµNNγ−1

where ∼ is defined for f(N), g(N) : Z+ → Z+ to be

f(N) ∼ g(N) ⇐⇒ lim
N→∞

f(N)
g(N)

= 1

andA,µ are lattice dependent constants while γ is a dimension dependent constant[2].
The constant µ is known as the growth constant and it can be shown that the limit
µ = limN→∞ c

1/N
N exists. The constant γ is referred to as a critical exponent and

in addition to characterizing the asymptotic behaviour of cN it provides a mea-
sure of the probability that two N -step SAWs starting at the same point do not
intersect[2]. This paper is concerned with providing estimates of both µ and γ.
Furthermore there are several statistics that one may gather on all SAWs of a given
length N . Indeed, the most important statistic is cN itself[6]; however, through the
clever use of probabilistic arguments–specifically Monte Carlo methods–one may
estimate cN by gaining a measure on a less expensive statistic to compute. In par-
ticular, the statistics of interest in this paper are referred to as atmospheres and
are discussed in more detail below.

1.2. Self Avoiding Polygons. The 2N (N ≥ 2) step SAP centered at the point
x on the Zd lattice is composed of a SAW ω starting at the point x of length
2N − 1 satisfying |ω(2N − 1)− x| = 1 with the condition ω(2N) = x. It should be
noted that the SAW which composes the SAP is not unique; in fact two 2N -step
SAPs are said to be equivalent up to translation if there is a vector v ∈ Rd such
that translating by v defines a one-to-one correspondence between the bonds in one
SAP to the other. It can be shown that the growth constant for SAPs is the same
as the growth constant µ for SAWs[3].

2. Atmospheres

For the purposes of this paper the discussion here is limited to SAPs and SAWs
in d ∈ {2, 3}. In fact, there are more rigorous results known for d ≥ 4; however,
these low dimensions remain to be the most difficult to analyze.
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2.1. Endpoint Atmosphere. The endpoint atmosphere ae(ω) of a SAW ω =
(ω(0), ω(1), ..., ω(N)) is defined to be the number of ways an edge may be appended
to the end of a SAW to form another SAW ( ae(ω) =

∣∣{x ∈ Zd : (ω(0), ..., ω(N), x) is a SAW
}∣∣ .)

The endpoint atmosphere has the property that
∑
|ω|=N ae(ω) = cN+1 and as a di-

rect consequence the average atmosphere of all SAWs of length N is

〈ae〉N =
∑
|ω|=N

ae(ω)
cN

=
cN+1

cN
.

Assuming the conjectured asymptotic form 1.1 and its uniform convergence, we
have that

lim
N→∞

〈ae〉N = lim
N→∞

cN+1

cN

= lim
N→∞

cN+1

AµN+1 (N + 1)γ−1 ·
AµNNγ−1

cN
· Aµ

N+1 (N + 1)γ−1

AµNNγ−1

= µ lim
N→∞

(
N + 1
N

)γ−1

= µ

We can further exploit 1.1 to assert that

〈ae〉 ∼ µ
(

1 +
γ − 1
N

+ . . .

)
by using the binomial series expansion. Also we may conclude

(2.1) log 〈ae〉N ∼ logµ+ (γ − 1) log
(
N + 1
N

)
.

By obtaining an estimate on the statistic 〈ae〉N over a range of increasing values
of N it is possible to fit the data to estimate both µ and γ for SAWs. It is, however,
unclear how to extend this definition to SAPs. Indeed, this statistic can be improved
upon since the standard deviation in the samples to obtain an estimate on 〈ae〉N
is found to be higher than in the statistics used below.

2.2. Generalized Atmospheres. In an effort to address the issues with the end-
point atmosphere ae defined in the previous section–that is to facilitate a definition
that holds for SAPs as well as a statistic which has a lower standard deviation in
sampling–one can define a positive atmosphere a+ and a negative atmosphere a− for
either SAWs or SAPs such that

∑
|ω|=N a

+(ω) =
∑
|ω|=N+1 a

−(ω). The motivation
for this is that then

〈a+〉N
〈a−〉N+1

=

∑
|ω|=N

a+(ω)
cN∑

|ω|=N+1
a−(ω)
cN+1

=
cN+1

cN

and we can use the methods of the previous section to obtain estimates for both
µ and γ. The difficulty lies in choosing a+, a− that are cheap to compute and satisfy
the condition. In this paper the choice of a+, a− for a SAW ω = (ω(0), ω(1), ..., ω(N))
are the number of ways an edge may be inserted anywhere in the SAW to produce
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another valid SAW, and the number of ways an edge may be deleted from the
SAW to produce another valid SAW respectively, or equivalently (note that in the
definitions that follow i is the place of insertion/deletion and x is the unit vector
direction of the insertion/deletion):

a+(ω) = |{(x, i) ∈ Zd × Z≥0 : |x| = 1, 0 ≤ i ≤ N,
(ω(0), . . . , ω(i), ω(i) + x, ω(i+ 1) + x, . . . , ω(N) + x) is a SAW}|

a−(ω) = |{i : 0 ≤ i ≤ N − 1, x = ω(i+ 1)− ω(i),
(ω(0), . . . , ω(i− 1), ω(i+ 1)− x, . . . , ω(N)− x) is a SAW }|.

For a SAP ω = (ω(0), ω(1), ..., ω(2N)) the value a+ is the number of ways 2 edges
may be inserted into the SAP to produce another valid SAP and a− is the number
of ways 2 edges may be deleted from the SAP to produce another valid SAP, or
equivalently:

a+(ω) = |{(x, i, j) ∈ Zd × Z≥0 × Z≥0 : |x| = 1, 0 ≤ i < j ≤ 2N,
(ω(0), . . . , ω(i), ω(i) + x, . . . , ω(j) + x, ω(j), . . . , ω(2N)) is a SAP}|

a−(ω) = |{(i, j) : 0 ≤ i < j ≤ 2N − 1, x = ω(i+ 1)− ω(i),
(ω(0), . . . , ω(i− 1), ω(i+ 1)− x, . . . , ω(j)− x, ω(j + 1), . . . , ω(2N)) is a SAP }|.

3. Pivot Algorithm

3.1. Introduction. The pivot algorithm falls under the classification of a dynamic
Monte Carlo method and provides a means to sample the set of all SAWs or SAPs
of a given length N efficiently. One then may assume the Central Limit Theorem
to hold and thus produce estimates on averages of any of the atmospheres–or any
statistic at that–described above. In fact the pivot algorithm can be shown to
produce “effectively independent” SAWs or SAPs in O(N logN) time[4]. This of
course is extremely efficient considering it takes O(N) time just to write down a
SAW or SAP.

3.2. Overview of Implementation. The algorithm is implemented as follows.
First an initial SAW of the input length N is picked for the starting point. In this
implementation this is just the straight line walk in any direction. At each step in
the algorithm the SAW length is conserved but a new SAW is reached by choosing
a “pivot site” uniformly at random along the current walk. At this site the SAW is
broken into two pieces, and a randomly chosen symmetry operation of Zd is applied
to one piece, using the site as the origin. The result is accepted if an only if it is
a SAW. Repeating this an appropriate number of times will produce SAWs that
are “effectively independent” from each other and atmospheres may be measured
to gain an estimate of the true mean atmosphere.

3.3. Results for SAWs. Since 2.1 is the asserted form of the quantity we are
interested in as N →∞ we should expect some corrections required to the form in
order to get a good fit. In fact, there is strong evidence[6] from series analysis to
suggest that 2.1 requires corrections of the form

(3.1) log
〈a+〉N
〈a−〉N+1

≈ logµ+ (γ − 1) log
(
N + 1
N

)
+
const

N2
.

The results of the pivot algorithm for SAWs can be seen in figure 3.1 and 3.2
where clearly a horizontal asymptote is visible in the empirical data on the left and
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Figure 3.1. The pivot algorithm results graphed for the SAW

estimates on log
〈a+〉

N

〈a−〉N+1
with d = 3

on the right we see a limit point forming. Using 3.1 to fit the data we obtain the
results of table 1.

The estimates of mean atmospheres are produced based on 106 samples for val-
ues of N ∈ {4, 8, 12, . . . , 252, 256} . The fits themselves discard lower values of N
which empirically produces better results. It should be noted that the results were
obtained on a regular PC and better results can be expected with more computing
power.

Figure 3.2. The pivot algorithm results graphed for the SAW

estimates on log
〈a+〉

N

〈a−〉N+1
with d = 2

d µ fit γ fit
2 2.63833754± 0.00018 1.32937± 0.012
3 4.683988544± 0.00023 1.16357± 0.012

Best estimate known for µ Best estimate known for γ
2.63815853034[1] 43/32

4.6839066± 0.0002 1.162 . . .
Table 1. Estimates with SAW data obtained from the Pivot Algorithm
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Figure 3.3. The pivot algorithm results graphed for the SAP

estimates on log
〈a+〉

N

〈a−〉N+1
with d = 2

Figure 3.4. The pivot algorithm results graphed for the SAP

estimates on log
〈a+〉

N

〈a−〉N+1
with d = 3

3.4. Results for SAPs. For SAPs we derive a similar fit equation to (3.1) taking
care that the values of N for SAPs increment by 2 instead of 1. We arrive at the
fit equation

log
〈a+〉N
〈a−〉N+1

≈ 2 logµ+ (α− 3) log
(

1 + 2
1
N

)
+
const

Nθ

where α is some constant, and the correction term θ ≈ .5 is obtained from the
asymptotic form[5]. We obtain the following results for d = 2, 3 in table 3.4. The
estimates for α are somewhat dissapointing since the value for α in the 2D case
should be α ≈ 1/2.

3.5. Atmosphere Histograms. In this section I provide graphs of the histograms
of the atmospheres (both positive and negative) for SAWs and SAPs in d = 2, 3.
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Figure 3.5. Histograms of 2D SAWs

Figure 3.6. Histograms of 2D SAPs

Figure 3.7. Histograms of 3D SAWs
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d µ fit α fit
2 2.638118569± 0.00044 0.443839± 0.00347
3 4.461700628± 0.031 2.4695± 0.04066

Table 2. Estimates with SAP data obtained from the Pivot Algorithm

Figure 3.8. Histograms of 3D SAPs
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