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1 Introduction
This summer I worked on applying Tschirnhaus Transformation to the

general polynomial of degree 5 using PGL2-covariant and the computer pro-
gram Maple with its extensional FGb package. Tschirnhaus Transformation is
a type of nonlinear substitution on polynomials that is developed by Ehren-
fried Walther von Tschirnhaus in 1683. Let f(x)=xn + a1x

n−1 + a2x
n−2 + ...+

an−1x + an be a monic polynomial of degree n whose coefficients are alge-
braically independent over a base field k of characteristic 0. Let K=k(a1, ...an),
let L=K[x]/f(x) be the root field of f over K, L/K is a finite separable field
extension of degree n. Tschirnhaus Transformation is used to find a generating
element y ∈ L whose minimal polynomial g(y)=yn + b1y

n−1 + b2y
n−2 + ...+ bn

over K is “simple”. Let Ky=k(b1, b2, ...bn), “simple” here means to minimize the
transcendence degree of Ky. For example, when n=2, p(x)=x2 + a1x+ a2 = 0,
now let y = x + a1/2 be the new generator for L/K. plug in x=y-a1/2, we
get q(y)=y2 + a2 − a21/2 = y2 + b2 = 0. Then the transcendence degree of
KY is 1, which is the minimum. I focused on the case of quintic polynomials,
where n = 5. It is shown in [3] that a general polynomial of degree 5 can be
reduced, via a Tschinrhaus transformation, to a polynomial with only two al-
gebraically independent coefficients. The goal of my project was to come up
with a constructive version of this proof, using a computer algebra system. My
project thus involved three components: (i) learning standard background mate-
rial in abstract algebra, mostly from Galois theory, (ii) familiarizing myself with
contemporary research on Tschirnhaus transformations, in particular, reading
research papers [1], [2] and [3], and adopting the methods from these papers to
my problem, and (iii) carrying out computer calculations.
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2 The Theorem
Theorem 1. Let f(x)=x5+a1x

4+a2x
3+...+a2x+a5 be a general polynomial

of degree 5 whose coefficients are algebraically independent over a base field k
of characteristic 0, then there exists a Tschirnhaus Transformation that is able
to trasform the polynomial to the form g(t) = t5 + C1t

4 + C2t
3 + ...C4t + C5,

where C1, C2, ...C5 satisfy the relations in U that is included in section 5 of this
report, and Trdegkk(C1, C2, C3, C4, C5) = 2.

3 Main Theoretical Method
The rest of the report is dedicated to construct the proof of the theorem,

which involves many related definitions, theorems, and technicalities. Let the
base field with characteristic of 0 to be N. Suppose f(x)=x5+a1x

4+a2x
3+ ...+

a4x+a5 with a1, ...a5 algebraically independent over N. Let K=N(a1, a2, a3, a4, a5),
L=K[x]/f(x), M=Lnorm = N(x1, x2, x3, x4, x5) , where x1, x2, x3, x4, x5 are dis-
tinct roots of f(x) and they are algebraically independent over N, it’s clear
that a1, a2, a3, a4, a5 also represent the elementary symmetric polynomials of
x1, x2, x3, x4, x5. The roots are algebraically independent over N is by Corol-
lary 18.8 in [4], Since K/N is a finitely generated field extension, and M/K is
finite extension, hence TrdegNM = TrdegNK = 5. By the Fundamental the-
orem of Galois, M/K is a Galois extension with Galois group of S5, M/L is a
Galois extension with Galois group of S4. And L/K is a field extension of degree
5, and there are no proper subfields between L and K. A new generator in L
that is invariant under both S4 and PGL2 is needed for the Tschirnhaus Trans-
formation. S4 action is clear, it acts on the combinations of x1, x2, x3, x4, x5,
taken four at a time. PGL2 acts on M as follows:

let the action g=(
a b
c d

),where a,b,c,d∈ N , then x
′

i = g(xi)=axi+b
cxi+d , where

1 ≤ i ≤ 5, then g sends the function f(x1, ...x5) to f(x
′

1, ...x
′

5). This action
commutes with the S5-action and hence, descends to L.

Since L ∼= K(x1) ∼= K(x2) ∼= K(x3) ∼= K(x4) ∼= K(x5) by the first
Isomorphism theorem, A new generator in L also means new generators in
K(x1),K(x2),K(x3),K(x4), and K(x5). Let J1, J2,J3,J4,J5 denote the new
generators in K(x1),K(x2),K(x3),K(x4), and K(x5) respectively. Since K(xi),where
1 ≤ i ≤ 5, is invariant under S4, meaning that it includes all the functions with
coefficients in N of variable x1, ...xi−1, xi+1, ...x5 that are invariant when S4 acts
on x1, ...xi−1, xi+1, ...x5 . Hence in order to make it easier to construct such gen-
erator, J1 is set to be the function of x2,x3,x4,x5 and since Tschirnhaus Trans-
formation applies to every generator equally, hence J2 = (12)J1, J3 = (13)J1
,J4 = (14)J1,J5 = (15)J1. Hence applying Tschirnhaus Transformation to
J1 and make it invariant under under both S4 and PGL2 will also set the
other four generators to have the same properties. Representing J1 in terms
of the cross-ratio of x2, x3, x4, x5 is a way to guarantee the J1 is invariant
under PGL2 which means J1(x2,x3,x4, x5) = J1((ax2 + b)/(cx2 + d), (ax3 +
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b)/(cx3 + d), (ax4 + b)/(cx4 + d), (ax5 + b)/(cx5 + d)), where a,b,c,d∈ N . So let
k1 = [x2, x3, x4, x5]=(x4−x2)(x5−x3)/(x4−x3)(x5−x2), and S4 acts on k1 as
σ(k1) = (xσ(4) − xσ(2))(xσ(5) − xσ(3))/(xσ(4) − xσ(3))(xσ(5) − xσ(2)). Four points
x2, x3, x4, x5 have 24 ways to be ordered, but there are only six ways to partition
them into two non-ordered pairs, hence four points have six different cross-ratios
which are all related. They are k1, 1/k1, 1−k1, 1/(1−k1), (k1−1)/k1, k1/(k1−1).
Let g(k1) = 1/k1 andh(k1) = 1− k1, Since 1/(1− k1) = g ◦ h(k1), (k1 − 1)/k1 =
h ◦ g(k1), k1/(k1 − 1) = g ◦ (h ◦ g(k1)). If J1 is a function of k1 that is invariant
under the functions of g(k1) = 1/k1 and h(k1) = 1− k1, then it is invariant un-
der any permutation of S4 acting on k1. By some luck, I found that the function
J1 = (k21 − k1 + 1)3/(k21 ∗ (k1 − 1)2) is the function we need. Because

J1◦g(k1) = (1/k21−1/k1+1)3/(1/k21∗(1/k1−1)2) = ((k21−k1+1)3/k61)/((k
2
1−

2k1 + 1)/k41) = (k21 − k1 + 1)3/((k1 − 1)2k21) = J1(k1)
Similarly, J1 ◦h(k1) = ((1−k1)

2− (1−k1)+1)3/((1−k1)
2 ∗ (1−k1−1)2) =

(k21 − k1 + 1)3/((1− k1)
2k21) = J1(k1).

There are also several other J-invariants that can be used as the generators,
for example,

J∗
1 = k21 + (1− k1)

2 +1/k21 +1/(1− k1)
2 + ((k1 − 1)/k1)

2 + (k1/(k1 − 1))2 =
(2k1

6 − 6k51 + 9k41 − 8k31 + 9 ∗ k21 − 6 ∗ k1 + 2)/(k21(k1 − 1)2),
but J1 gives a more concise result in the end. After we determine the J1,

we plug it in J2 = (12)J1, J3 = (13)J1 ,J4 = (14)J1,J5 = (15)J1, notice that
J2, J3, J4, J5 will be the functions of the variable of k2, k3, k4, k5 respectively,
where k2, k3, k4, k5 are cross-ratios such that k2 = (12)k1, k3 = (13)k1, k4 =
(14)k1, k5 = (15)k1. J1, J2, J3, J4, J5 are the generators of K∗(J1),K

∗(J2),K
∗(J3),K

∗(J4),K
∗(J5)

respectively which are all isomorphic to L∗ = K∗[J ]/g(J), where g(J)= J5 +
C1J

4+C2J
3+C3J

2+C4J+C5 , K∗ is the subfield of K that is invariant under
PGL2. Notice that C1, C2, C3, C4, C5 are the elementary symmetric polynomi-
als of J1, J2, J3, J4, J5, namely

C1 = −(J1+J2+J3+J4+J5), C2 = J1J2+J1J3+J1J4+J1J5+J2J3+J2J4+
J2J5+J3J4+J3J5+J4J5, C3 = −(J1J2J3+J1J2J4+J1J2J5+J1J3J4+J1J3J5+
J1J4J5 + J2J3J4 + J2J3J5 + J2J4J5 + J3J4J5), C4 = J1J2J3J4 + J1J2J4J5 +
J1J2J3J5 + J1J3J4J5 + J2J3J4J5, C5 = −J1J2J3J4J5.

Let M∗ be the subfield of M invariant under PGL2, hence M∗ = MPGL2 =
N(J1, J2, J3, J4, J5), then K∗ = (M∗)S5 = N(C1, C2, C3, C4, C5). Hence M∗/K∗

and M∗/L∗ are Galois extensions with Galois group S5 and S4 respectively.
Our original plan was to find the three independent polynomial relations among
C1, C2, C3, C4, C5, and in order to do that, we have to find the three indepen-
dent relations among J1, J2, J3, J4, J5 first. all of these relations exist because
PGL2-covariant condition makes the transcendence degree of M∗, L∗, and K∗

to be 2. However, any set of relations that generates the polynomial ideal that
contains the polynomial ideal that is generated by the three independent rela-
tions also makes the transcendence degree of K∗ to be 2, which is what included
in the theorem.
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4 Computer Algebra Methods
I will discuss the main computer algebra methods in this section, the main

result will be discussed in next section. A computer algebra program with
strong functionalities is needed in order to find the independent polynomial re-
lations due to the high degree polynomials in both the denominator and the
numerator of the J-invariants.initially I tried basically all the related and built-
in functionalities in both Maple and Mathematica, but they failed to do the
job. Luckily I found that an extensional Maple package online called FGb
that is able to find the relations. FGb is a fast library for computing Grobner
bases which in our case is a particular kind of generating set of the ideal I in
the polynomial ring N [k1, k2, k3, k4, k5, J1, J2, J3, J4, J5] . Here I is the ideal
generated by the polynomial relations among k1, k2, k3, k4, k5, J1, J2, J3, J4, J5
after normalizing the J-invariants. By the definitions of J1, J2, J3, J4, J5, we
already have five polynomial relations. We need three more independent re-
lations among k1, k2, k3, k4, k5 in order to obtain three independent relations
among J1, J2, J3, J4, J5, which exists in principle since PGL2-covariant makes
the transcendence degree of N(k1, k2, k3, k4, k5) to be 2 as well. By some sim-
ple computation and verifying on Maple, the three independent relations are:
k2k3 = k1, k4k5 = k1, (1− k2) ∗ (1− k4) = 1− k1. Hence

I = (k12 ∗ (k1− 1)2 ∗ J1− (k12 − k1+ 1)3, k22 ∗ (k2− 1)2 ∗ J2− (k22 − k2+
1)3, k32∗(k3−1)2∗J3−(k32−k3+1)3, k42∗(k4−1)2∗J4−(k42−k4+1)3, k52∗
(k5−1)2∗J5−(k52−k5+1)3, k2∗k3−k1, k4∗k5−k1, (1−k2)∗(1−k4)−1+k1),

notice that all the subscripts are omitted since they are copied from Maple.
Now the line fgb−gbasis−elim(I, 0, [k1, k2, k3, k4, k5], [J1, J2, J3, J4, J5]) will
output the generators of I that is solely dependent on J1, J2, J3, J4, J5. Here 0
represents the field of characteristic of 0. Denote the new generating sets of I
that is solely in terms of J1, J2, J3, J4, J5 to be R. Now let H denote the new ideal
generated by R and the elementary symmetric polynomials of J1, J2, J3, J4, J5.
hence

H = (C1+(J1+J2+J3+J4+J5), C2− (J1∗J2+J1∗J3+J1∗J4+J1∗
J5+J2∗J3+J2∗J4+J2∗J5+J3∗J4+J3∗J5+J4∗J5), C3+(J1∗J2∗J3+
J1∗J2∗J4+J1∗J2∗J5+J1∗J3∗J4+J1∗J3∗J5+J1∗J4∗J5+J2∗J3∗J4+
J2∗J3∗J5+J2∗J4∗J5+J3∗J4∗J5), C4−(J1∗J2∗J3∗J4+J1∗J3∗J4∗J5+
J1∗J2∗J4∗J5+J1∗J2∗J3∗J5+J2∗J3∗J4∗J5), C5+J1∗J2∗J3∗J4∗J5, R).

Then the line fgb−gbasis−elim(H, 0, [J1, J2, J3, J4, J5], [C1, C2, C3, C4, C5])
is able to output the new generating setsof H that is solely depend on C1, C2, C3, C4, C5,
denote it U.

5 Main Result and Discussion
From previous section, relations in R and U contain the most concise rela-

tions that I could obtain within the time limit of this research and everyone of
them has been verified to be correct. As mentioned in the section 3, originally,
we expected to see three independent relations in both R and U. But in reality,
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the program gave us 13 relations in R, and 11 relations in U. Since the relations
in R are just the stepstone for getting relations in U, hence only the relations
in U is included in this report:

U = {−18225216∗C1∗C3∗C52+113038400∗C1∗C4∗C52+38234624∗C1∗C53+
12363840 ∗C2 ∗C3 ∗C4 ∗C5− 14928192 ∗C2 ∗C3 ∗C52 +2286208 ∗C2 ∗C4 ∗C52 −
5508608∗C2∗C53−5427200∗C32 ∗C52+881920∗C3∗C42 ∗C5+2754304∗C3∗C4∗
C52 +118720 ∗C44 − 688576 ∗C43 ∗C5+ 3422379600 ∗C1 ∗C3 ∗C5− 10318100208 ∗
C1 ∗C4 ∗C5− 13463482304 ∗C1 ∗C52 − 98910720 ∗C2 ∗C3 ∗C4 + 208445184 ∗C2 ∗
C3 ∗C5+1880727472 ∗C2 ∗C4 ∗C5− 294018560 ∗C2 ∗C52 − 148824000 ∗C32 ∗C5−
33886080 ∗ C3 ∗ C42 − 412894592 ∗ C3 ∗ C4 ∗ C5− 561806784 ∗ C3 ∗ C52 − 7455616 ∗
C43+129435328∗C42 ∗C5+1356579520∗C4∗C52+833482240∗C53−65001738551∗
C1 ∗C3− 948113500463 ∗C1 ∗C4− 2377460148132 ∗C1 ∗C5+ 261320544989 ∗C22 +
6557780736∗C2∗C3+142510973211∗C2∗C4+92954235288∗C2∗C5−61819200∗C32+
4337967744∗C3∗C4−75429917152∗C3∗C5+20701762052∗C42−111745986944∗C4∗
C5−89658291216∗C52−59726498761800∗C1−723900019740∗C2−719895170440∗
C3− 7210994658460 ∗ C4− 23505852782913 ∗ C5− 582413878748480 = 0,

53 ∗ C23 − 603 ∗ C1 ∗ C3 + 5459 ∗ C1 ∗ C4 + 1272 ∗ C1 ∗ C5− 2380 ∗ C22 + 477 ∗
C2 ∗C3+ 371 ∗C2 ∗C4− 424 ∗C2 ∗C5+ 212 ∗C3 ∗C4+ 141472 ∗C1+ 17968 ∗C2−
13160 ∗ C3 + 35000 ∗ C4 + 22697 ∗ C5 + 1351936 = 0,

1321184 ∗C1 ∗C3 ∗C5+10021664 ∗C1 ∗C4 ∗C5+4355328 ∗C1 ∗C52 +2163672 ∗
C22 ∗C3+1236384 ∗C2 ∗C3 ∗C4− 1236384 ∗C2 ∗C3 ∗C5+ 247616 ∗C2 ∗C4 ∗C5−
474880 ∗C2 ∗C52 − 732672 ∗C32 ∗C5+ 183168 ∗C3 ∗C42 +237440 ∗C3 ∗C4 ∗C5−
59360 ∗C43 − 193883881 ∗C1 ∗C3− 1860695857 ∗C1 ∗C4− 3389650828 ∗C1 ∗C5 +
615051451 ∗C22 − 50382648 ∗C2 ∗C3 + 371171349 ∗C2 ∗C4− 56205864 ∗C2 ∗C5−
309096∗C32−11127456∗C3∗C4−140867216∗C3∗C5+59336044∗C42+130054368∗
C4 ∗ C5 + 110511360 ∗ C52 − 114549969960 ∗ C1 − 5704279788 ∗ C2 − 1527020288 ∗
C3− 15992191092 ∗ C4− 28477757215 ∗ C5− 1075766900800 = 0,

8654688 ∗C1 ∗C32 +1321184 ∗C1 ∗C3 ∗C5+10021664 ∗C1 ∗C4 ∗C5+4355328 ∗
C1 ∗ C52 + 1236384 ∗ C2 ∗ C3 ∗ C4 − 1236384 ∗ C2 ∗ C3 ∗ C5 + 247616 ∗ C2 ∗ C4 ∗
C5 − 474880 ∗ C2 ∗ C52 − 732672 ∗ C32 ∗ C5 + 183168 ∗ C3 ∗ C42 + 237440 ∗ C3 ∗
C4 ∗C5− 59360 ∗C43 + 469281587 ∗C1 ∗C3− 1803358549 ∗C1 ∗C4− 3848349292 ∗
C1 ∗ C5 + 375965695 ∗ C22 − 4945536 ∗ C2 ∗ C3 + 313834041 ∗ C2 ∗ C4− 56205864 ∗
C2 ∗ C5 + 75419424 ∗ C32 − 19782144 ∗ C3 ∗ C4− 123557840 ∗ C3 ∗ C5 + 59336044 ∗
C42+130054368∗C4∗C5+110511360∗C52−72206908920∗C1−2002236996∗C2+
4117999960 ∗ C3− 16260486420 ∗ C4− 37172473147 ∗ C5− 703372985536 = 0,

388384∗C1∗C3∗C5+296800∗C1∗C4∗C5+40704∗C1∗C52+57240∗C22 ∗C4−
45792∗C2∗C3∗C5−3392∗C2∗C4∗C5−13568∗C2∗C52+6784∗C3∗C4∗C5−1696∗
C43+3469873∗C1∗C3−61098983∗C1∗C4−62363828∗C1∗C5+12058397∗C22−
1236384∗C2∗C3+5536539∗C2∗C4+3064248∗C2∗C5−538056∗C3∗C4+1735856∗
C3 ∗ C5 + 1345988 ∗ C42 + 3383520 ∗ C4 ∗ C5 + 1221120 ∗ C52 − 2998850040 ∗ C1 −
3506820 ∗C2+ 49775408 ∗C3− 469697676 ∗C4− 635036057 ∗C5− 29486572736 = 0,

228960∗C1∗C3∗C4+388384∗C1∗C3∗C5+296800∗C1∗C4∗C5+40704∗C1∗
C52−45792∗C2∗C3∗C5−3392∗C2∗C4∗C5−13568∗C2∗C52+6784∗C3∗C4∗C5−
1696∗C43+8735953∗C1∗C3−27899783∗C1∗C4−44161508∗C1∗C5+10741877∗
C22−1236384∗C2∗C3+6738579∗C2∗C4−3003192∗C2∗C5+1465344∗C3∗C4+
1735856∗C3∗C5+1117028∗C42+3841440∗C4∗C5+1221120∗C52−1743805800∗C1−
139680780∗C2+95853608∗C3−260313756∗C4−302929577∗C5−15867116096 = 0,

−6784 ∗ C1 ∗ C3 ∗ C5 + 1696 ∗ C1 ∗ C42 + 6467 ∗ C1 ∗ C3 + 1115067 ∗ C1 ∗ C4 +
1641940 ∗C1 ∗C5− 290321 ∗C22 − 184599 ∗C2 ∗C4− 8904 ∗C2 ∗C5 + 22896 ∗C3 ∗
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C5− 17172 ∗ C42 − 3392 ∗ C4 ∗ C5− 13568 ∗ C52 + 60859144 ∗ C1 + 1610556 ∗ C2 +
91288 ∗ C3 + 9308972 ∗ C4 + 15159221 ∗ C5 + 585392960 = 0,

−160272∗C1∗C3∗C5−114480∗C1∗C4∗C5−20352∗C1∗C52+5936∗C2∗C3∗
C5+ 4240 ∗C2 ∗C42 +1696 ∗C2 ∗C4 ∗C5+ 6784 ∗C2 ∗C52 − 3392 ∗C3 ∗C4 ∗C5+
848 ∗C43 − 345009 ∗C1 ∗C3 + 23763239 ∗C1 ∗C4 + 32588004 ∗C1 ∗C5− 6096741 ∗
C22 + 160272 ∗ C2 ∗ C3− 3635747 ∗ C2 ∗ C4− 394744 ∗ C2 ∗ C5 + 68688 ∗ C3 ∗ C4 +
88192∗C3∗C5−652324∗C42−1144800∗C4∗C5−644480∗C52+1339684840∗C1+
25509580 ∗C2− 4997544 ∗C3+ 191021148 ∗C4+ 306730281 ∗C5+ 12970376768 = 0,

−64∗C1∗C3∗C5+16∗C22∗C5+227∗C1∗C3+9275∗C1∗C4+16372∗C1∗C5−
2561∗C22−1431∗C2∗C4−760∗C2∗C5+288∗C3∗C5−212∗C42+64∗C4∗C5−
128∗C52+570600∗C1+9420∗C2+2344∗C3+72012∗C4+160245∗C5+5539392 = 0,

106∗C12+4∗C1∗C3−C22+1958∗C1+21∗C2+35∗C3−4∗C4+8∗C5+8944 = 0,
106 ∗ C1 ∗ C2 + 12 ∗ C1 ∗ C3− 3 ∗ C22 − 3242 ∗ C1 + 1229 ∗ C2 + 105 ∗ C3 + 94 ∗

C4 + 24 ∗ C5− 32528 = 0}.
It would be the best to find the sub ideal in U that is generated by the

three independent relations of C1, C2, C3, C4, C5, but due to the time limit of
this research and my limited knowledge of computer algebra, such ideal is not
found. Nevertheless, since U generate H entirely, the relations in U are capable
of reducing the Transcendence degree of K∗ by 3, hence this completes the
constructive proof of the theorem.
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