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1. Introduction. The Laplace–Beltrami operator is widely used in geometric
modelling and computer graphics for applications such as smoothing, segmentation
and registration of shapes [2, 5]. Another novel application is characterizing shapes
by extracting their ‘fingerprints’. The idea of ‘Shape-DNA’ was first introduced by
Reuter, Wolter and Peinecke [3]. The full spectrum of eigenvalues of Laplace–Beltrami
is useful because it contains intrinsic information of Riemann manifolds, such as vol-
ume and surface area [3]. We use the smallest 50 eigenvalues, scaled by the first
non-zero eigenvalue as the Shape-DNA. Since the spectrum is isometry invariant
(isometries include rotation, translation and reflection), the Shape-DNA can char-
acterize objects robustly, independent of parametrization. Storing and processing
Shape-DNA enables identification in shape databases in machine learning applica-
tions.

Using the previously developed closest point method (CPM) [4, 1], we discretized
the Laplace–Beltrami operator to a matrix M . Then, MATLAB was used to solve
the eigenvalue problem on various surfaces to compute approximations to the Shape-
DNA. We improved the memory usage of the default MATLAB ‘eigs’ algorithm using
an iterative approach. Finally, we used multidimensional scaling plots to represent
the similarities between the shapes.

Fig. 1. Eigenfunctions on pig, Stanford bunny, apple, mobius strip and hemisphere surfaces

2. Implementation. The discretized L–B operator matrixM , obtained through
Closest Point Method [4], is a sparse, nonsymmetric matrix. MATLAB’s ‘eigs’ uses
Arnoldi iteration to iteratively compute the largest eigenvectors—starting with a ran-
dom vector v, the sequence of vectors in a Krylov space {Mv,M2v, ...,Mn−1v} con-
verges to the eigenvector vmax corresponding to the largest eigenvalue. Similarly,
using this iteration on the inverse of M gives eigenvectors corresponding to the small-
est eigevalue. This requires that we solve the subproblem Mvn = vn−1 in every step
of the iteration. The default method of solving this linear system in MATLAB is the
‘\’ operator. This method does not take sufficient advantage of the sparsity of M , and
runs out of memory for ∆x ≤ 0.0125 for a unit sphere. We implemented an iterative
solver using GMRES to solve the subproblem using less memory. Incomplete L-U
factorization was performed for preconditioning, which was essential for the solution
to converge in a reasonable amount of time. While this method saved memory space,
so far it seems to be slower than the default direct method.

3. Numerical verification and convergence studies. The error in comput-
ing the truncated spectrum (λn) of the L–B operator using the closest point method
should be C(n)∆x2; second-order accuracy as ∆x→ 0 was observed in practice on a
unit sphere and other surfaces. The constant C(n) would grow larger as n increases as
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smaller ∆x will be required to resolve the higher eigenvalues due to the eigenfunctions
becoming more oscillatory. We rotated various surfaces in space and compared the
Shape-DNA. As ∆x→ 0, the difference converges at second-order (Figures 2 and 3),
which confirms the rotational invariance.

Fig. 2. Ellipsoid rotation test Fig. 3. Hemisphere with Neumann BC

4. Preliminary results on clustering using multidimensional scaling.
Multidimensional scaling is an algorithm that takes vectors and clusters them through
nonlinear dimension reduction. Using MATLAB’s ‘mdscale’ command, we attempted
to cluster a collection of shapes using 2D and 3D plots, as shown in Figures 4 and 5.
Euclidean distance (in the Shape DNA space) was used to compute similarities. We
observe, for example that in Figure 4, “sphere rings” (spheres punctured by holes of
various sizes) are clustered with the sphere when the hole is small, and ones with big
holes are with the hemisphere, as might be expected. In Figure 5, rounded and closed
shapes such as apple, sphere and ellipsoid are clustered.

Fig. 4. Clustering punctured spheres, others Fig. 5. Clustering a collection of shapes
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