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It is a well known fact that if an element of a Lie Algebra can be expressed as a commutator of two other
elements, then in the infinite term limit, its exponential (the corresponding element of the Lie Group) can
also be expressed as a product of the exponentials of those elements. This project looks at a generalization
of the finite term case.

Lie groups are often used to represent symmetries in the solving of differential equations. By showing
that one potential symmetry can be represented in terms of the others, one can establish that if an equation
satisfies those symmetries, it will also satisfy the other.

Additionally, this can be used in problems of control theory. Lie Groups can be used to represent spaces of
transformations. If an apparatus has mechanisms for moving in a limited set of ways, other transformations
can potentially be generated by composing these motions in certain ways. This method allows one to
determine both whether this is possible in a given number of steps and to determine an explicit composition.

The method works by assuming that there are paths from the origin to the desired point in the Lie Algebra
through the space of points that can be expressed in this way and that the decomposition is continuous and
differentiable. More specifically, the version developed requires that, if the desired point is e for some
A in the Lie Algebra, then the decomposition of ef4 for f € [0, €] must be both existent, continuous and
differentiable. This is reasonable, given that a high enough number of steps is allowed, as if e, 724
are decomposable, so too is e("172)4 hut with a higher number of steps, by merely appending the two
decompositions.

The first step of the method is to choose a basis for the Lie Algebra that includes the two elements you
want to express things in terms of. We call this basis B = {B1, Ba, Bs, ...}. Next, we use the power series of
the exponential to find T;; in the Lie Algebra that satisfies expressions of the form e?i B; = T;;eB:.

Now, if R is the element whose exponentials one wishes to express in terms of the exponentials of By, Bo,
they take the equation eft = a1 ()B1¢ga2(€)B2gas(€)B1gasa() Bz ean(€)Bn mod 2 where n is the number of terms
desired in the decomposition. Next, one differentiates both sides with respect to €. As a Lie Algebra is a
differentiable manifold, and as it was assumed that the decomposition was differentiable, this is possible.
Moving the terms from the Lie Algebra to the left of the right hand side using the results e®iB; = T;;eP
and cancelling the e on both sides gives us a differential equation in the Lie Algebra which can be now
solved.

This project began with an evaluation of parallel parking in a simplified driving model called the unicycle
model. Under the unicycle model, cars may preform two actions: They may translate (a possibly negative
amount) in a straight line in the direction they are facing and they may rotate their facing direction counter-
clockwise (by a possibly negative amount). To parallel park, a car must translate in the perpendicular
direction of its facing via a composition of these motions. We evaluate this in three ways: a simple geometric
method, a more traditional algebraic method and our new method. The three ways agree on the correct
solution.



Next, we use the complete classification of three-dimensional Lie Algebras given by Libor Snobl and
Pavel Winternitz in Classification and Identification of Lie Algebras. In all but two algebras, there was a
pair of elements that generated the rest of the Algebra. In all but one case, it was possible to choose such a
pair so that they were both elements of the canonical basis given by Snobl and Winternitz. Where possible,
we then looked at how to generate an arbitrary element of the Lie Group (expressed as ec(aX+pY +22)
where {X,Y, Z} was the basis) as a four-term product of exponentials of this pair. (One more term than
the dimension of the Algebra gave one degree of freedom to the differential equations and thus made it so
solutions generally existed) In all but one case, an explicit solution to the resulting differential equations was
found.

We also investigated two special cases of interest in each Algebra: the expansion of the third basis vector
in terms of the other two and the expansion of the commutator of the chosen two elements.

The one remaining case where the differential equations were in general unsolved was so3. However, a
formula for the third basis vector as a three-term expansion of the other two is known in this case, and it
was checked and confirmed as a solution of the differential equations.

Finally, to show that the method works more generally, we solve one example where the Lie Algebra is
four-dimensional and the desired element is not spanned by the two basis elements and their commutator,
but rather obtained taking the commutator twice.



