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1 Introduction

During the summer, I had the privilege and pleasure of studying under supervision
of Professors Julia Gordon and Sujatha Ramdorai on the resolution of singularities
and related topics in algebraic geometry. Very roughly speaking, the goal is to take
some singular algebraic variety X (for example, a curve or surface), and to resolve
(”smooth out”) its singular points, which in some sense are ”badly” behaved points,
and at the end of the process to obtain a new variety X (called desingularization,
or nonsingular model of X) which is birationally isomorphic to X away from the
singular points. In order to give more precise formulation of the problem, one needs
to introduce the concept of blow-up. In simplest terms, blow-up is the process of
replacing a singular point with the projectivized tangent space. For example, one
can blow-up the origin of the affine plane A2 as depicted in the diagram below.

Figure 1: Blow-up of the plane at a point
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Following [5], we give the definition of a blow-up at the origin of An. Consider

B = {(x, `) ∈ An × Pn−1 : x ∈ `} ⊆ An × Pn−1

The set B is called one point blow-up of An at the origin. We have the canonical
projection:

π : B → An

by sending (x, `) to x. Let’s investigate the fibers of π. If x ∈ An \ {0}, then π−1(x)
is the unique line through x and the origin, which we can denote by `x. So if x 6= 0,
then π−1(x) = (x, `x). However, since every ` ∈ Pn−1 passes through the origin, we
have π−1(0) = (0,Pn−1). An intuitive way to visualize the blow-up is that the map
π : B → An collapses the entire projective space Pn to the origin, but is bijective
elsewhere. The Figure 1 is exactly the situation described when n = 2.

One important application of blow-up is that if we look at the inverse image of a
singular curve under the aforementioned map π, the resulting new curve (now living
in A2 × P1) may no longer possess the singularity, which is what we want! Consider
the example below, where singular point (0, 0) of y2 = x3 + x2 has been unknotted.

Figure 2: Blow-up of the nodal curve y2 = x3 + x2 at the nodal point

The precise formulation of the problem for resolving singularities of algebraic
varieties, sometimes called strong desingularization, asks for a sequence of blow-ups
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that satisfy certain conditions, in particular, requiring that the exceptional divisor
(i.e. the inverse image of the centre of the blow-up) is of particularly nice form,
e.g. has normal crossings. What this means exactly requires the concept of normal
crossing divisor, and it would take this report too far afield to define such a term. In
any case, the complete answer was given to this question in the affirmative when k
(the ground field) has characteristic zero by Hironaka [4].

2 Toric Varieties

The so-called toric varieties have an interesting combinatorial interpretation, and in
this setting resolution of singularities has been studied extensively. A toric variety is
defined as an irreducible variety X containing a torus TN ∼= (C∗)n as a Zariski open
subset, such that the action of TN on itself extends to an algebraic action of TN on
X. This is a rather abstract definition, but it turns out that toric varieties also arise
from concrete combinatorial data, such as cones and fans. For a finite set of vectors
S ⊆ Rn, we define the convex polyhedral cone spanned by S to be the set of all
linear combination of vectors in S with positive coefficients in R. A finite collection
F of polyhedral cones is called a fan if τ ∈ F for every face τ of every σ ∈ F , and
σ1∩σ2 ∈ F for every σ1, σ2 ∈ F . For example, the projective plane P2 and a product
of two copies of projective line P1 × P1 can be realized as:

Figure 3: Fans for P2 (left) and P1 × P1 (right)

There is a beautiful connection between resolution of singularities and continued
fractions in the case of two-dimensional affine toric varieties [7]. It can be shown
that any singular two-dimensional affine toric variety can be constructed from a cone
σ generated by two vectors v1 = e2 = (0, 1) and v2 = me1 − ke2 = (m,−k) where
0 ≤ k < m and gcd(m, k) = 1. To resolve the singularities, one can use the idea of
”fan refinement” which means inserting a new ray into the middle of our cone σ. The
main observations are: 1) The vectors e1 and e2 generate the full lattice Z2, so the
resulting toric variety is non-singular, and 2) Inserting extra vectors to singular toric
variety corresponds to blowing-up. Based on these two ideas one can prove that a
sequence of refinements of the cone will correspond to a sequence of blow-ups leading
to a complete desingularization of the corresponding toric variety. More precisely,
suppose a cone σ is given in the standard form (i.e. generated by e2 and me1 − ke2,
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0 ≤ k < m, gcd(m, k) = 1). We insert the ray e1 = (1, 0) into σ. The ”upper cone”
generated by e1 and e2 generates non-singular variety, and the ”lower” cone between
the rays is now generated by e1 and me1 − ke2.

We can rotate the lattice by 90◦ counter-clockwise, which will bring the lower cone
into standard position. We also need to translate the vector (m, k) to its standard
location, which will be (m1,−k1) where m1 = k, 0 ≤ k1 < m1 and k1 = a1k −m for
some a1 ≥ 2 (existence of a1, k1 is guaranteed by division algorithm).

Figure 4: Blow-up for a 2-dimensional Affine Toric Variety

Now if k1 = 0, then the cone would be smooth because it is generated by a basis.
Otherwise, we have
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We can repeat the process (until kr = 0) to get:

m
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1
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1

· · · −
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ar

If we recursively define vi+1 = aivi−vi−1 with initial rays v0 = e2 and v1 = me1−ke2,
then we have inserted r rays into our original cone. The procedure has r successive
blow-ups, and so there will be r exceptional divisors, say Ei for 1 ≤ i ≤ r. Further-
more, Ei

∼= P1 for each i. More surprisingly, Ei and Ej will intersect transversally
for each i 6= j, and self-intersection number will be Ei ·Ei = −ai. The interpretation
for negative self-intersection involves the concept of normal bundles. See Figure 5.
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Figure 5: Dual graph for exceptional divisors

3 My role

Since my background in commutative algebra wasn’t strong at the start of the sum-
mer, I started working through the classic ”Introduction to Commutative Algebra”
by Atiyah & Macdonald [1]. I solved good amount of the exercises (typed up in
53 page long document) in the first 8 chapters, which Professor Ramdorai and her
grad student Li Zheng kindly checked and provided me with great feedback. I also
completed reading some basic algebraic geometry texts, such as [5].

I tried to use Macaulay2 and Singular software to understand resolution of sin-
gularities for variety of nilpotent elements in a Lie algebra, and other closely related
varieties. An example of such a variety would be the set of all nilpotent matrices
in Mn×n(C), viewed as a closed subset in the Zariski topology. As a result, we can
investigate its algebro-geometric properties such as its dimension, singular locus, etc.
One tentative goal was that perhaps we could borrow techniques for explicit resolu-
tion of singularities from the study of toric varieties to the case of nilpotent varieties.
We are aware of the Springer resolution [6], but it is not yet clear how to think of
it as a blow-up, and we would have liked to have exceptional divisors with normal
crossings. While I haven’t concluded anything worthwhile in this direction, learning
how to use these computer algebra systems has been greatly beneficial. I have decided
to continue examining some of the unanswered questions during the school year.

I am most grateful to have been awarded NSERC USRA for the summer, which
has contributed vastly to my mathematical development, and has given me extra
motivation to go further in learning algebraic geometry (which I plan to do in graduate
school). I will take this opportunity to thank Professors Julia Gordon and Sujatha
Ramdorai for spending their many hours for elucidating some of the finest points in
commutative algebra/algebraic geometry, and the explanations they have provided
have been more helpful than any textbook could offer. I also want to thank Math
department IT support, especially Thi, for kindly helping me to install Singular
software and its graphics support to my computer.
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