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This summer I worked with Prof. Brian Marcus, Prof. Andrew Rechnitzer and John
Enns on methods to calculate and approximate the entropy of multidimensional shift spaces
and stochastic processes. The entropy of one-dimensional shifts and stochastic processes has
been extensively studied and many results have been obtained for analysis of the entropy of
these systems [1]. In higher dimensions, however, analogous results are rare, and expressions
for the entropy of some seemingly simple examples are not known. Our main focus was on
two-dimensional shifts, and in particular on the Golden Mean shift in two-dimensions, but
we were able to prove some results for general shifts satisfying certain broad restrictions. We
also studied entropy in the context of stochastic processes and obtained an extension of a
result for one-dimensional processes to two-dimensional processes.

We first studied entropy in the context of stochastic processes, which are indexed se-
quences of discrete random variables {Xi : 1 ≤ i ≤ n}. The entropy of a stochastic process,
denoted H({Xi}), is defined as:

H({Xi}) = −
∑

{xi}∈Xn

p(x1, x2, . . . , xn) log p(x1, x2, . . . , xn) (1)

where X is the alphabet of possible states and p(x1, x2, . . . , xn) is the probability mass
function for the states of the n variables xi ∈ X . The entropy rate of a stochastic process is
given by two equivalent definitions:

H(X ) = lim
n→∞

1

n
H(X1, X2, . . . , Xn) = lim

n→∞
H(Xn|Xn−1, Xn−2, . . . , X1) (2)

The equivalence of the first definition to the second, which uses the entropy of a discrete
random variable Xn conditioned on the previous random variables in the sequence of the
stochastic process is proved in [2]. We proved an equivalent conditional entropy definition for
the entropy rate of a two-dimensional stochastic process, which is a set of discrete random
variables with two indices. We showed that the limit of the sequence of conditional entropies
with the discrete random variables in the plane conditioned on the variables in an L-shaped
set defined by three integers is equal to the two-dimensional entropy rate:
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H(X ) = lim
n,k→∞

1

nk
H(X1,1, X1,2, . . . , Xn,k) = lim

n1,n2,n3→∞
H(Xn1,n2|Ln1,n2,n3) (3)

where the set Ln1,n2,n3 is defined as

Ln1,n2,n3 = {(x, y) ∈ N2 : (x = n1 and y < n2) or (x < n1 and y ≤ n2 + n3)} (4)

Next we focused on the entropy of shift spaces. A shift space or shift in one-dimension
is defined as the set of all bi-infinite sequences of symbols chosen from some finite set of
symbols called an alphabet. Without any other restrictions, the shift is called the full shift
on the alphabet. Other shifts can be defined as subsets of the full shift by specifying finite
sequences of symbols from the alphabet and requiring that these sequences not appear in
the bi-infinite sequences of a shift as subsequences of consecutive symbols. These blocks of
symbols are called forbidden blocks. The entropy of a shift X is defined as:

h(X) = lim
n→∞

(
logNn

n

)
(5)

where Nn is the number of length n sequences of symbols with no forbidden blocks as
subsequences. It is possible to construct shifts in two-dimensions from one-dimensional shifts
by requiring that every row and column of symbols arranged on an infinite plane contain no
blocks forbidden by the one-dimensional shift. For a shift X, we denote the two-dimensional
shift constructed in this way as X ⊗X.

We initially focused on the one-dimensional Golden Mean shift, which is a shift on the

alphabet {0, 1} defined by forbidding the block 11. This shift has entropy equal to log
(

1+
√
5

2

)
[1]. The entropy of the shift in two-dimensions obtained by requiring that every row and
column belong to the Golden Mean shift is not exactly known, however several estimates
and bounds have been obtained [3] [4] [5]. We obtained bounds on this entropy by analyzing
the entropy of a one-dimensional shift with the extra condition that the sequence could be
coiled up to form a valid configuration on a helix of circumference l. This shift has the
advantage that the memory and processing power required to calculate its entropy increases
more slowly with l than other methods of estimation. This advantage is nullified, however,
by the fact that the upper and lower bounds obtained with this method are necessarily much
further apart than bounds obtained through other methods, and so do not provide increased
precision in estimating the two-dimensional Golden Mean shift entropy.

Finally, we examined shifts where the entropy of the one-dimensional shift is equal to
the entropy of the two-dimensional shift constructed by requiring that bi-infinite sequences
along rows and columns are elements of the one-dimensional shift. That is, shifts X such
that h(X) = h(X ⊗X). Full shifts on any alphabet have this property, however there also
exist shifts with this property that forbid some blocks over their alphabet. The example of
a shift like this that motivated our work was that of the odd shift, which is defined as

ODD = {x ∈ {0, 1}Z : there are an odd number of 0s between any consecutive 1s in x}
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We proved necessary and sufficient conditions for a certain class of shifts to have this property.
In particular, our result applies to irreducible sofic shifts. A shift is irreducible if for any
allowed blocks u and v over the alphabet of the shift, there exists another block w so that the
concatenation of blocks uwv contains no subsequence of forbidden words for the shift. A shift
is sofic if it can be represented as the set of all labels of the edges of infinite paths through
a labeled graph G. In this case, we say that the graph G presents the sofic shift. Many
graphs may present a sofic shift, but only some presentations are of interest. A presentation
is right resolving if no two edges joining the same pair of vertices in the graph have the same
label. For a sofic shift X, the graph with the fewest vertices that presents X is called the
minimal presentation of X. It is proved in [1] that for all irreducible sofic shifts there exists
a minimal right-resolving presentation of the shift. Hence, we define the period of a sofic
shift as the greatest common divisor of the lengths of cycles in the minimal right-resolving
presentation of a shift. We proved the following theorem:

Theorem. Let X be an irreducible sofic shift with period p. Then h(X) = h(X ⊗X) if and
only if the minimal right-resolving presentation of X contains p states.

I am extremely grateful to Prof. Marcus and Prof. Rechnitzer for their help and en-
couragement over the course of this project and for giving me this opportunity. I am also
grateful to John Enns for his collaboration and assistance and to the UBC Department of
Mathematics and NSERC for their support.
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