Applied Qualifying Exam
January 10, 2004.
Part 1

. For what values of the real constants a and b is
f(2) = azy + i(z? + by?)
analytic? Here we have used z = x + iy.

. Find the distance from the ellipse
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to the straight line z + y = 4.
. Let A be an n X n matrix with complex entries. An n X n-matrix B is

called a square root of A if B2 = A. Suppose A is non-singular and has
n distinct eigenvalues. How many square roots does A have?

. Let f be a real function on [0, 1] having the following property: for any
real y, the equation f(x) —y = 0 has either no roots, or exactly two
roots. Prove that f cannot be continuous at every point in the interval
[0,1].

. Define a sequence x1, xs, ... recursively by xg = ¢, x1 = 1 — ¢, and
Tpyo = 2.Dxp41 — 1.52,

for n > 1. For what values of ¢ does the sequence {x,} converge? If it
converges, what is the value of lim,, o, x,?

. Consider the system in the plane

dr 3 dy 2
— =y—z — =z —y.
a4 4

(a) Find all fixed points of this system. Use linearized stability anal-
ysis to determine which fixed points are stable.

(b) Sketch the phase portrait (solution curves in the  — y plane).



Applied Qualifying Exam
January 10, 2004.
Part 11

1. Consider the following partial differential equation for u(z,t):

where u(x,t) is L—periodic in « for all t. The parameters «, # and 7
are positive.

(a) Use scaling to minimize the number of essential parameters.

(b) Show that for smooth solutions u(x,t) of (1)
L
M = / u(x, t)dz
0

1s constant in time.

2. Introduce new coordinates into the plane quadrant z > 0, y > 0
through the transformation:

& =2y, n=ay’.

(a) Determine = and y as functions of & and 7.

(b) Compute the Jacobian matrices
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(c) Compute and simplify AB. Comment on the result.

3. Are the following statements true? In each case give a proof or a
counterexample. Assume that A and B are n x n-matrices with real
entries and n > 2.

(a) If det(A) = det(B) = 1 then A + B is non-singular.

(b) If A and B are symmetric matrices all of whose eigenvalues are
strictly positive, then A + B is non-singular.



4. Evaluate the integral
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5. A function is said to be even if f(x) = f(—x) for all z. Let V be the
vector space of all even polynomials p(z) of degree less than or equal
to 2n. Let A be the operator
d2
T da?
acting on V.
(a) Prove that 0 is the only eigenvalue of A. What is the correspond-
ing eigenspace?
(b) Prove that the operator mapping the polynomial p(z) into the
polynomial
q(z) = plz +1) +plz - 1)
defines a linear mapping B of V into itself.

(¢) Does B commute with A7

6. Consider the following PDE problem for u(z,t) on the domain > 0
and ¢ > 0:

U = Uy forxz >0, t>0
u(x,0) = 0 forz>0
u(0,t) = sinwt fort >0
lim u(x,t) 0 forallt>0

r—00

where w is a given positive constant, the angular frequency of the forc-
ing at the boundary. As t — oo the solution u tends to a limiting
solution that has angular frequency w. Determine an explicit formula
for this limiting solution.



