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In the real and complex analysis parts of this exam, please state carefully any results that you use in your
arguments

1. (3 points) True or false: There exists an infinite set X for which the normed space

B(X) =
{
f : X → R : f is bounded

}
is separable, under the sup norm.

2. (3 points) True or false: Any Lipschitz function f : Q → R extends uniquely to a continuous function
g : R→ R.

3. (5 points) True or false: There exists a sequence {fn : n ≥ 1} ⊆ C[0, 1] with ||fn||∞ ≤ 1 for which no
subsequence of

Fn(x) =

∫ x

0

fn(t) dt

is uniformly convergent on [0, 1]. Here C[0, 1] denotes the space of real-valued continuous functions on
[0, 1].

4. (5 points) True or false: Let V =
⋃∞
n=1Wn be an infinite-dimensional normed vector space, where each

Wn is a finite-dimensional subspace of V . Then V cannot be complete.

5. (5 points) True or false: Every subset of a metric space can be written as the intersection of open sets.

6. (5 points) True or false: Every bounded continuous function on R is uniformly continuous.

7. (4 points) True or false: The limit of a point-wise convergent sequence of Riemann integrable functions
on [0, 1] must be Riemann integrable.



Complex analysis

8. (a) (3 points) Compute ∮
Γ

(
1

(z − i)2
+ 2z̄

)
dz

where Γ is the positively positively oriented triangle with corners 0, 1, 1 + i.

(b) (2 points) Let C be the positively oriented unit circle and let g be a continuous, complex-valued
function defined in a neighbourhood of C. Prove that∮

C
g(z)dz =

∮
−C

g(z)
dz

z2
,

where −C denotes the negatively oriented circle.

(c) (5 points) Let 0 < α < 1. Use the proposed curve γ to compute

∫ ∞
0

xα

1 + x2
dx.

γ

0 b

9. (a) (3 points) Consider the mapping θ : C→ C given by θ(x+iy) = y+ix. Let Ω ⊂ C be open and such
that θ(Ω) = Ω. Let f be a holomorphic function in Ω. Let g : Ω → C be given by g(z) = f(θ(z)).
Prove that g is holomorphic in Ω.

(b) (3 points) Consider the Taylor series of

6

b− 2z2 + z3
= 3 +

∞∑
n=1

anz
n

around z0 = 0. Compute b, a1, a2 and find a recursion relation of the form

an = αan−1 + βan−2 + γan−3

that is valid for all n ≥ 3.

(c) (4 points) Recall that n!! = n(n− 2)(n− 4) · · · , for example 8!! = 8 · 6 · 4 · 2. Show that the unique
analytic solution of the differential equation

f ′′(z)− zf ′(z)− f = 0

such that f(0) = i and f ′(0) = 0 is given by f(z) = i +
∑∞
j=1

i
(2j+1)!!z

2j+1.

10. (a) (4 points) Let r = 1√
3
, Ω = {|z| < 2r

3 = 2
3
√

3
} and γ be the circle centred at the origin of radius r,

oriented positively.
(i) Prove that for any w ∈ Ω, there is a unique solution ζ in the disc {|z| < r} of z3 + z = w.
(ii) Denote the solution of part (i) by ζ = f(w). Prove that

f(w) =
1

2πi

∫
γ

z(3z2 + 1)

z3 + z − w
dz.

(b) (3 points) Let f be entire and for which there is α > 0 such that |f(z)| ≤ B|z|α for |z| sufficiently
large. Prove that f is a polynomial.

(c) (3 points) Determine all functions f holomorphic in the unit disc such that

f(1/n) = 1/n2

for all n large enough. Hint: Consider the function g(z) = f(z)− z2.
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