Qualifying Exam Problems: Analysis
(Jan 10, 2015)

1. (10 points) For each value of the real constant a > 0, discuss the convergence of the series
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Solution: By using the obvious inequality n! < n”, we get
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Thus if @ > 1, then the series diverges.
On the other hand, if 0 < a < 1, then

and the series converges by using comparison test.

2. Let ;7 j; k be the usual unit vectors in R3. Let F be the vector field
(22 4 )i + (xy)] + (zz + 22)E.

a) (3 points) Compute V x F.
b) (7 points) Compute the integral of V x F over the surface 22 + 32 + 22 =4, z > 0.

Solution:
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Let Q = {(x,y,2) € R3|22 +y2 +22 =4, 2 > 0}, D = {(x,9,0) € R3|2% + y? < 4}. Note that Q and
D have the same boundary. By using Stokes’ Theorem, we get
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3. (10 points) Let f: R — R be a twice differentiable function such that f > 0 and f” < 0 everywhere.
Prove that f must be a constant.

Solution: Let zg € R. Enough to show f’(x¢) = 0. Now observe that for any t, we have

0 < flzo+1t) = flxo) + f'(wo)t + @IQ < flxo) + f'(zo)t.

Since t is arbitrary, the result follows.

4. (10 points) Three sets of entire functions are described below. For each set, do two things:
(i) Explain why there is a parametric representation of the form
f(z)=co+ciz+...+enz?, (co,¢1,---,¢N) €S,

where N > 0 is an integer and S is a subset of C'T%.

(ii) Describe the value of N and the conditions defining S as completely as possible.

Here are the sets:

(a) All entire functions f such that Im {f(z)} <0 for all z € C.

(b) All entire functions f such that |f(z)| < 2015 + |2|" for all z € C.
(c) All entire functions f such that |f”(z)| < |z| for all z € C.

Solution:

(a) Given any such f, let g(z) = exp (—if(z)). Then g is entire, with
g =dmUE <1, zec

By Liouville’s Theorem, g must be constant. Since f is continuous, it follows that f must also
be constant. To match the requested pattern, take N = 0 and let S denote the set of ¢ € C
where Im {c} < 0.

(b) A direct application of the Extended Liouville Theorem implies that any f satisfying the given
condition is a polynomial of degree at most 10. So NV = 10 will work in the desired representa-
tion. A detailed description of S is not possible.

(¢) Any f of the given family will make g(z) = f”(z)/z analytic at all points z # 0, and bounded
in a neighbourhood of z = 0. Therefore g has a removable singularity at 0 and we can treat g
as if it were entire. With this interpretation,

lg(z)] <1, z€C,

so Liouville’s Theorem implies that g(z) = k for some complex k with |k| < 1. Consequently
1"(2) = kz, which leads to

k k
f'(z) = 522+01a f(z) = 623+012+Co~
Thus N = 3 fits the desired pattern, with

1
S = {(00,01,62,03) =0, |03| < 6} .
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5.

(a) (10 points) For each real constant a in the interval —1 < a < 1, present simple closed-form expres-
sions for the integrals below:

27 2m
do do
I(a)= | —% - %
(a) /0 1+asinf’ I(a) /0 1+ acosf

(b) Evaluate I(4i/3), where I denotes the integral defined in part (a).
Note: Since the input a = 4i/3 does not obey the assumptions in part (a), a complete solution must
interpret and explain the term “evaluate” as well as producing a numerical value.

Solution:

(a) One has I(a) = J(a) for all a, thanks to the change of variable ¢ = 6 — 7/2. So focus on
I(a), recognizing sin = (¢’ — e~%) /(2i). The parametrization z = e’ makes dz = ie’ df), so
df = dz/(iz) and

Q) = dz/(iz) _ 2dz _ N de
Ta) /M_l 0t alz — 1/2)/(@) /|z_1a22+2iza /M_lf“d’

fe) = o = 2

az?+2iz—a (z2—20)(z—21)

where

The poles of f can be determined using the quadratic formula:

—2i++v—-4+4a®> i
z = e —
2a a
Both are purely imaginary; we name them zg = % [71 +V1—a?|, n1 = é [71 — V1 —a?|.
Now
1+ V1 —a? - 1

lal 7 la

[—1i 1—a2}.

|Zl|: >17

so z; lies outside the disk of interest, and (from the factorization above)
2021 =|-1=1 = J|z|=—<1.

It follows that I(a) = 2miRes (f;20). To find this residue, suppose A and B make

2/a ~ (o) = A B

(2 —20)(2 — 21) z—z0+z—zl'

Then 2/a = A(z — z1) + B(z — 2p), and sending z — zp gives

2/a 1
Res(f;20) = A= = )
(f320) zo—21 /1 —a?

Finally, recalling I(a) = 27i Res (f; 20),
2m
V1—a?

(b) Analytic extension of I(z) from the real interval —1 < z < 1 to a superset having nonempty
interior in C requires some kind of branch cut linking the points z = +1. Go the long way,
discarding all points z = x + 40 for which || > 1. (Sketch.) Then

(4if3) = ——2" b7

VI+(16/9) 5

Page 3



3
6. (10 points) Prove that this equation has precisely four solutions in the annulus 3 < |z| < 2:

224+ 152+1=0.

Include a statement of the main theorem (or theorems) on which your analysis is based.

Solution: This is a double application of Rouché’s Theorem. A simple form of this result says,
“Let v be a simple closed curve. Suppose f and g are analytic at all points on and inside 7, and

1f(2) —g(2)| <lg(2)|,  =z€n.

Then f and g have the same number of zeros of f inside 7y, counted according to multiplicity.”
(There is a more elaborate form, which allows a finite number of poles for f and g inside ~.)

We use f(z) = 2% + 152 + 1 in both cases.

First, take g(z) = 15z + 1 and let y be the circle where |z| = 3/2. Clearly g has exactly one zero
inside 7, at z = —1/15. And on ~, the triangle inequality gives both

3 43 42
|g(z)||15z+1|215|z|115( > =

2
and .
3 243 256
5 5
— = || = = T
) -l = = = =22 < 20 =8

Thus the conditions for Rouché’s Theorem are in force, and we deduce that f has exactly one zero
in the set where |z| < 3/2.

Second, take g(z) = 2° + 15z and let v be the circle where |z| = 2. This time each z on 7 obeys
9(2)| = |2° + 152] > | (|z\4 - 15) —2(16— 15) = 2

and
f(z) —g(2)| = 1.

Thus the conditions for Rouché’s Theorem are in force, and we deduce that f has the same number
of zeros as g has inside 7. Clearly g(z) = z(2* + 15) has one zero at the origin and another four on
the circle |z| = 151/% < 2, so f has 5 zeros with |z| < 2.

Combining the results above, we find that all 5 roots of f obey |z| < 2, and exactly one satisfies
|z| < 3/2. So there are exactly 4 zeros obeying 3/2 < |z| < 2. To get the chain of strict inequalities
requested in the setup, it would suffice to re-run the first application of Rouché’s Theorem on any
circle of radius slightly larger than 3/2. The gap between 21 and 8 noted above is positive, so there
exists some € > 0 for which the desired inequality remains valid on |z| = % + €, and this completes
the proof.
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