
Qualifying Exam Problems: Algebra
(Jan 10, 2015)

1. (10 points) Suppose G is a finite group, p is the smallest prime dividing |G|, and H is a subgroup of G
with [G : H] = p. Show that H is a normal subgroup of G. (Hint: consider the action of G on the set
of right cosets of H.)

Solution: Consider the right action of G on the set of right cosets of H in G. This action defines
a homomorphism φ from G into symmetric group on p letters. Then

Kerφ = {g ∈ G : gkH = kH ∀k ∈ G}.

Since if g ∈ Kerφ, then since in particular gH = H, we see that Kerφ ⊂ H. Since G/ Kerφ ∼= Im φ
is a subgroup of Sp, the symmetric group on p letters, we see that |G/ Kerφ| = [G : Kerφ] must
divide p!. Then since

|G|
|Kerφ|

=
|G|
|H|

· |H|
|Ker φ|

= p · |H|
|Kerφ|

divides p!, the prime factors of |H|/|Kerφ| must be smaller than p. However, since p is the smallest
prime dividing |G|, we deduce that |H|/|Kerφ| = 1 and hence Kerφ = H. This implies that

gkH = kH ∀g ∈ H, k ∈ G,

or in other words
k−1gk ∈ H ∀g ∈ H, k ∈ G

which proves H is normal.

2. (a) (2 points) Show that Q(
√

2,
√

3) = Q(
√

2 +
√

3).

Solution: Since clearly K = Q(
√

2+
√

3) ⊂ Q(
√

2,
√

3), we need to show the reverse inclusion.
(
√

2 +
√

3)2 = 5 + 2
√

6 ∈ K and so
√

6 ∈ K. Thus
√

6(
√

2 +
√

3) = 2
√

3 + 3
√

2 ∈ K and so
(2
√

3+3
√

2)−2(
√

3+
√

2) =
√

2 ∈ K which then implies that
√

3 ∈ K so that Q(
√

2,
√

3) ⊂ K.

(b) (3 points) Determine the minimal polynomial for
√

2 +
√

3 over the field Q.

Solution: Let α =
√

3 +
√

2. Then α2 = 5 + 2
√

6 and so (α2 − 5)2 = 24 or equivalently, α
satisfies the equation

x4 − 10x2 + 1 = 0.

We claim this is the minimal polynomial. This follows if we show that the degree of the extension
Q(
√

2,
√

3)/Q is 4. The degree of the extension Q(
√

2)/Q is 2 since
√

2 6∈ Q so we just need to
show that the degree of Q(

√
2,
√

3)/Q(
√

2) is not 1, i.e. that
√

3 6∈ Q(
√

2). Suppose that
√

3 = a + b
√

2

for a, b ∈ Q. Then a2 + 2b2 + 2ab
√

2 = 3 ∈ Q and so ab
√

2 ∈ Q. Clearly neither a nor b can be
zero and so this implies that

√
2 ∈ Q, a contradiction.

(c) (3 points) Determine the Galois group and all the intermediate field extensions of the extension
Q(
√

2 +
√

3)/Q.



Solution: The roots of the minimal polynomial

x4 − 10x2 + 1 = (x2 − 5)2 − 24

are given by
+
√

2 +
√

3, +
√

2−
√

3, −
√

2 +
√

3, −
√

2−
√

3,

and the Galois group must be an order 4 subgroup of the group of permutations of these roots.
The automorphisms of Q(

√
2,
√

3) given by (
√

2,
√

3) 7→ (−
√

2,
√

3) and (
√

2,
√

3) 7→ (
√

2,−
√

3)
generate an order four group isomorphic to the Klein four group Z/2×Z/2 permuting the roots
and so this must be the Galois group.
By the fundamental theorem of Galois theory, the intermediate fields are in bijective corre-
spondence with proper, non-trivial subgroups of Z/2 × Z/2 and so there are three of them,
corresponding to the fixed fields of the three non-trivial automorphisms:

(
√

2,
√

3) 7→ (−
√

2,
√

3) fixes Q(
√

3)

(
√

2,
√

3) 7→ (
√

2,−
√

3) fixes Q(
√

2)

(
√

2,
√

3) 7→ (−
√

2,−
√

3) fixes Q(
√

3
√

2) = Q(
√

6)

(d) (2 points) Determine the splitting field for the polynomial x4 + 4 over Q. What is the degree of
this splitting field over Q?

Solution: The polynomial x4 + 4 factors as

(x2 + 2x + 2)(x2 − 2x + 2)

and so the roots are −1± i and 1± i. Alternatively we can find the roots by solving x4 = −4
by De Moivre’s theorem. One root is x =

√
2eiπ/4 = 1 + i, and the others are obtained by

multiplying by the 4th roots of unity {1, i,−1,−i}. The splitting field is therefore Q(i) which
has degree 2.

3. (10 points) Show that the ring R[x, y]/(x2+y2−2, xy+1) is isomorphic to the ring R[a]/(a2)⊕R[b]/(b2).
Hint: draw the curves {x2 + y2 = 2} ⊂ R2 and {xy = −1} ⊂ R2.

Solution: Geometrically, the two curves are tangent to each other at the points (1,−1) and (−1, 1)
suggesting that a rotation by π/4 will simplify the problem. Thus we let x = w + z and y = w − z
inducing an isomorphism

R[x, y]/(x2 + y2 − 2, xy + 1) ∼= R[w, z]/(w2 + z2 − 1, w2 − z2 + 1)
∼= R[w, z]/(w2, z2 − 1).

We then define a ring homomorphism

φ : R[w, z]/(w2, z2 − 1) → R[a]/(a2)⊕ R[b]/(b2)

by
φ : f(w, z) 7→ (f(a, 1), f(b,−1)).

φ is well-defined since φ(w2) = φ(z2 − 1) = (0, 0). We just need to show that φ is surjective and in-
jective. The ring R[w, z]/(w2, z2−1), considered as a vector space over R, is spanned by {1, w, z, wz}
since any monomials divisible by z2 or w2 can be reduced in degree using the relations. Similarly,
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the vector space underlying the ring R[a]/(a2)⊕R[b]/(b2) is spanned by {(1, 0), (0, 1), (a, 0), (0, b)}.
As a linear transformation, expressed in the given basis, φ is given by the matrix

1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1


which has determinant −4 and is hence invertible. Thus φ is injective and surjective.

4. a) (5 points) Let A ∈ Mn×n(R) be a symmetric matrix with all eigenvalues greater than or equal to
0. Show that there exists a square matrix B with A = BT B.

b) (3 points) show that for any square matrix C ∈ Mn×n(R), the matrix CT C is a symmetric matrix
with all eigenvalues greater than or equal to 0.

c) (2 points) Find the Jordan Canonical form of the matrix

A =

 2 2 3
1 3 3
−1 −2 −2



Solution: If A is a symmetric matrix then there exists and orthogonal matrix Q and a diagonal
matrix D (of eigenvalues λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0,. . .) such that AQ = QD or A = QDQT . Now since

D =


λ1 0 0 · · ·
0 λ2 0 · · ·
0 0 λ3 · · ·
...

...
. . .

 we may take E =


√

λ1 0 0 · · ·
0

√
λ2 0 · · ·

0 0
√

λ3 · · ·
...

...
. . .


(using the fact that λi ≥ 0) so that EET = E2 = D. Then A = QEET QT = BT B for B = ET QT .

Now if CT C is symmetric since
(
CT C

)T = CT
(
CT

)T = CT C and so CT C has real eigenvalues.
Let (CT C)x = λx with x 6= 0. But then xT (CT C)x = xT λx and so ||Cx|| = xT (CT C)x = xT λx =
λ||x||. Given that ||Cx|| ≥ 0 and ||x|| > 0 we deduce that λ ≥ 0.

For c), the characteristic polynomial is det(xI − A) = (x − 1)3. One can then proceed to find the
dim of the subspaces. Easy to check that the answer is1 0 0

0 1 1
0 0 1



5. (10 points) Let

A =

 0 −2 1
−2 3 −2

1 −2 0


The eigenvalues for A are -1,5. Determine an orthonormal basis for R3 that are eigenvectors for A and
then give an orthogonal matrix Q and a diagonal matrix D so that AQ = QD.
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Solution: By a variety techniques we can determine det(A− λ) = −(λ + 1)2(λ− 5). Either use a
straightforward calculation or recall that the determinant is the product of the eigenvalues or that
the trace is the sum of the eigenvalues. The issue here is determining two orthogonal vectors in the
eigenspace for λ = −1.

λ = −1 :

1
1
1

 ,

 1
0
−1

 and λ = 5 :

 1
−2
1

 .

The students might use Gram Schmidt on the 2-dimensional eigenspace or perhaps using the cross
product given two eigenvectors. Now the students need to remember to normalize to obtain

Q =

 1/
√

3 1/
√

2 1/
√

6
1/
√

3 0 −2/
√

6
1/
√

3 −1/
√

2 1/
√

6

 , D =

 −1 0 0
0 −1 0
0 0 5



6. Let A ∈ Mn×n(R). Define the map f : Mn×n(R) → Mn×n(R) by

f(A) = AT .

(a) (2 points) Show that f is linear.

Solution: We check that f(A + B) = (A + B)T = AT + BT = f(A) + f(B) and f(kA) =
(kA)T = kAT = kf(A).

(b) (3 points) Determine the dimension of the eigenspace of eigenvalue 1 for f .

Solution: If A is an eigenvector of eigenvalue 1 then f(A) = A and so AT = A and so A is
symmetric. The dimension of the space of symmetric matrices is

(
n
2

)
+ n, namely the matrices

Eij + Eji for i 6= j and Eii (where Eij is the matrix in Mn×n(R) with a 1 in position i, j and
0’s elsewhere.

(c) (3 points) A matrix C is skew symmetric if CT = −C. Determine the dimension of the eigenspace
of eigenvalue −1 for f .

Solution: If A is an eigenvector of eigenvalue −1 then f(A) = −A and so AT = −A and so
A is skew symmetric. As above the dimension of the space of skew symmetric matrices is

(
n
2

)
,

namely the matrices Eij − Eji for i 6= j.

(d) (2 points) Show that any matrix A ∈ Mn×n(R) is a sum of a symmetric matrix B and a skew
symmetric matrix C.

Solution: Using arguments about eigenspaces we note that the eigenspaces of different eigen-
values are linearly independent namely the eigenspaces for 1 and −1 generate a vector space of
dimension

(
n
2

)
+n+

(
n
2

)
= n2 which is the dimension of Mn×n(R). So a basis for the eigenspace

for eigenvalue 1 and a basis for the eigenspace for eigenvalue -1 yield a basis for Mn×n(R) and
so every A ∈ Mn×n(R) can be written as a sum B + C where B is symmetric and C is skew
symmetric.
Alternatively one can note that A = 1

2 (A + AT ) + 1
2 (A−AT ).
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